dropout_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/dropout_op.h"
S
sneaxiy 已提交
16
#include <memory>
P
phlrain 已提交
17
#include <string>
X
Xinghai Sun 已提交
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

28
  void InferShape(framework::InferShapeContext* ctx) const override {
29
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Dropout");
Q
Qiao Longfei 已提交
30 31 32

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim("Out", x_dims);
33
    if (ctx->Attrs().Get<bool>("is_test") == false) {
Q
Qiao Longfei 已提交
34
      ctx->SetOutputDim("Mask", x_dims);
35
    }
Q
Qiao Longfei 已提交
36
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
37
  }
M
mapingshuo 已提交
38 39 40 41 42 43 44

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
X
Xinghai Sun 已提交
45 46 47 48
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
49
  void Make() override {
X
Xinghai Sun 已提交
50
    AddInput("X", "The input of dropout op.");
M
mapingshuo 已提交
51 52 53
    AddInput("Seed",
             "The seed of dropout op, it has higher priority than the attr "
             "fix_seed and seed")
54 55
        .AsDispensable()
        .AsExtra();
X
Xinghai Sun 已提交
56
    AddOutput("Out", "The output of dropout op.");
57 58 59
    AddOutput("Mask", "The random sampled dropout mask.")
        .AsIntermediate()
        .AsExtra();
X
Xinghai Sun 已提交
60

K
Kexin Zhao 已提交
61
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
62 63
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
64 65 66
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'dropout_prob' must be between 0.0 and 1.0."));
C
chengduoZH 已提交
67
        });
68 69 70 71
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
72 73 74 75 76 77
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
78 79 80
        .SetDefault(false)
        .AsExtra();
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0).AsExtra();
P
phlrain 已提交
81 82 83 84 85 86 87 88 89
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
C
ceci3 已提交
90
        "   inference: out = input * (1.0 - dropout_prob)"
P
phlrain 已提交
91 92 93 94 95 96 97 98
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
99 100 101 102 103
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
P
phlrain 已提交
104
        });
K
Kexin Zhao 已提交
105

106 107 108
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
109
Dropout refers to randomly dropping out units in a nerual network. It is a
110 111
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
112
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
113 114
are set equal to their corresponding inputs.

115
)DOC");
X
Xinghai Sun 已提交
116 117 118 119 120 121 122
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

123
  void InferShape(framework::InferShapeContext* ctx) const override {
124 125 126
    OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "DropoutGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "DropoutGrad");
Q
Qiao Longfei 已提交
127 128

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
sneaxiy 已提交
129 130 131 132 133

    ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
    ctx->ShareLoD(framework::GradVarName("Out"),
                  /*->*/ framework::GradVarName("X"));
  }
Z
Zeng Jinle 已提交
134 135 136 137

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
138 139 140
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
141
  }
S
sneaxiy 已提交
142 143
};

H
hong 已提交
144 145
template <typename T>
class DropoutGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
146
 public:
H
hong 已提交
147
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
148 149

 protected:
150
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
151
    op->SetType("dropout_grad");
H
hong 已提交
152 153 154 155
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
X
Xinghai Sun 已提交
156 157 158 159 160 161 162
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
163
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
H
hong 已提交
164 165
                  ops::DropoutGradOpMaker<paddle::framework::OpDesc>,
                  ops::DropoutGradOpMaker<paddle::imperative::OpBase>);
166
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
167
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
168 169
    dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, double>);
X
Xinghai Sun 已提交
170
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
171
    dropout_grad,
P
phlrain 已提交
172 173
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, double>);