softmax_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

17 18 19
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
20 21 22
namespace paddle {
namespace operators {

D
dongzhihong 已提交
23
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
24 25 26
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
32 33 34

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(x_dims.size() == 2UL,
C
caoying03 已提交
35
                   "The input of softmax op must be a matrix.");
F
fengjiayi 已提交
36
    ctx->SetOutputDim("Out", x_dims);
Q
Qiao Longfei 已提交
37
    ctx->ShareLoD("X", /*->*/ "Out");
38
  }
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    bool use_cudnn = ctx.Attr<bool>("use_cudnn");
    bool runtime_cudnn_support = false;
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
57 58 59 60 61 62
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
    }
#endif
63 64 65 66 67
    std::string data_format = ctx.Attr<std::string>("data_format");
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
        framework::StringToDataLayout(data_format), library_);
  }
68
};
D
dongzhihong 已提交
69
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
70
 public:
71
  SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
72
      : OpProtoAndCheckerMaker(proto, op_checker) {
73
    AddInput("X",
C
caoying03 已提交
74 75
             "The input tensor of softmax. "
             "2-D with shape [batch_size, input_feature_dimensions].");
F
fengjiayi 已提交
76
    AddOutput("Out", "The normalized values with the same shape as X.");
77 78 79 80 81 82 83 84 85 86 87
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
88 89 90
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
C
caoying03 已提交
91
    AddComment(R"DOC(
92 93 94
Softmax Operator.

The input of the softmax operator is a 2-D tensor with shape N x K (N is the
C
caoying03 已提交
95 96 97 98 99
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.

For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
100 101 102 103 104 105
values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
106

107
For each row $i$ and each column $j$ in Input(X), we have:
F
fengjiayi 已提交
108
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
109 110

)DOC");
111 112 113
  }
};

D
dongzhihong 已提交
114
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
115 116 117
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

118
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
119 120 121 122 123 124
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
125

Q
Qiao Longfei 已提交
126
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
D
dongzhihong 已提交
127
  }
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    bool use_cudnn = ctx.Attr<bool>("use_cudnn");
    bool runtime_cudnn_support = false;
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
    std::string data_format = ctx.Attr<std::string>("data_format");
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
        framework::StringToDataLayout(data_format), library_);
  }
D
dongzhihong 已提交
151 152
};

153 154 155
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
156
namespace ops = paddle::operators;
D
dongzhihong 已提交
157

158 159
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
            ops::SoftmaxOpGrad);
D
dongzhihong 已提交
160
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
161 162 163 164
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>);