vision.py 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from ...device import get_cudnn_version
from ...fluid.framework import core, in_dygraph_mode, Variable
R
ruri 已提交
17
from ...fluid.layer_helper import LayerHelper
18 19 20
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid import dygraph_utils
import numpy as np
R
ruri 已提交
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

def affine_grid(theta, out_shape, align_corners=True, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
        theta (Tensor) - A tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Tensor | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        align_corners(bool): Whether to align corners of target feature map and source feature map. Default: True.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`.

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np
            # theta shape = [1, 2, 3]
            theta = np.array([[[-0.7, -0.4, 0.3],
                               [ 0.6,  0.5, 1.5]]]).astype("float32")
            theta_t = paddle.to_tensor(theta)
            y_t = F.affine_grid(
                    theta_t,
                    [1, 2, 3, 3],
                    align_corners=False)
W
whs 已提交
60
            print(y_t)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            
            #[[[[ 1.0333333   0.76666665]
            #   [ 0.76666665  1.0999999 ]
            #   [ 0.5         1.4333333 ]]
            #
            #  [[ 0.5666667   1.1666666 ]
            #   [ 0.3         1.5       ]
            #   [ 0.03333333  1.8333334 ]]
            #
            #  [[ 0.10000002  1.5666667 ]
            #   [-0.16666666  1.9000001 ]
            #   [-0.43333334  2.2333333 ]]]]
    """
    helper = LayerHelper('affine_grid')

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Tensor.")
    check_variable_and_dtype(theta, 'theta', ['float32', 'float64'],
                             'affine_grid')
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None and cudnn_version >= 6000 and align_corners:
        use_cudnn = True
    else:
        use_cudnn = False
85 86
    if core.is_compiled_with_rocm():
        use_cudnn = False  # ROCM platform do not have MIOPEN kernel for affine_grid
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
            isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Tensor.")

    if in_dygraph_mode():
        _out_shape = out_shape.numpy().tolist() if isinstance(
            out_shape, Variable) else out_shape
        return core.ops.affine_grid(theta, "output_shape", _out_shape,
                                    "align_corners", align_corners, "use_cudnn",
                                    use_cudnn)

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {"align_corners": align_corners, "use_cudnn": use_cudnn}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
        check_variable_and_dtype(out_shape, 'out_shape', ['int32'],
                                 'affine_grid')
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131


def grid_sample(x,
                grid,
                mode='bilinear',
                padding_mode='zeros',
                align_corners=True,
                name=None):
    """
    This operation samples input X by using bilinear interpolation or
    nearest interpolation based on flow field grid, which is usually
    generated by :code:`affine_grid` . The grid of shape [N, H, W, 2]
    is the concatenation of (x, y) coordinates with shape [N, H, W] each,
    where x is indexing the 4th dimension (in width dimension) of input
    data x and y is indexing the 3rd dimension (in height dimension),
    finally results is the bilinear interpolation or nearest value of 4 nearest corner
    points. The output tensor shape will be [N, C, H, W].
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148


    Step 1:

    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    .. code-block:: text

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
    interpolate point value by 4 nearest points or nearest interpolate point value
    by nearest point.

149
    .. code-block:: text
150 151 152 153 154 155 156 157 158 159 160

        wn ------- y_n ------- en
        |           |           |
        |          d_n          |
        |           |           |
        x_w --d_w-- grid--d_e-- x_e
        |           |           |
        |          d_s          |
        |           |           |
        ws ------- y_s ------- wn

161 162 163 164 165 166 167 168 169 170 171 172 173
        For bilinear interpolation:
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
174

175
        output = wn * d_e * d_s + en * d_w * d_s
176 177
                + ws * d_e * d_n + es * d_w * d_n

178 179 180 181 182 183 184 185 186 187
    Args:
        x(Tensor): The input tensor, which is a 4-d tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Tensor): Input grid tensor of shape [N, grid_H, grid_W, 2]. The
                        data type is float32 or float64.
        mode(str, optional): The interpolation method which can be 'bilinear' or 'nearest'.
                         Default: 'bilinear'.
        padding_mode(str, optional) The padding method used when source index
188
                   is out of input images. It can be 'zeros', 'reflection' and 'border'.
189 190 191 192 193 194 195
                   Default: zeros.
        align_corners(bool, optional): If `align_corners` is true, it will projects
                   -1 and 1 to the centers of the corner pixels. Otherwise, it will
                   projects -1 and 1 to the image edges.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
196 197 198 199

    Returns:
        Tensor, The shape of output is [N, C, grid_H, grid_W] in which `grid_H` is the height of grid and `grid_W` is the width of grid. The data type is same as input tensor.

200
    Examples:
201

202
        .. code-block:: python
203
        
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # shape=[1, 1, 3, 3]
            x = np.array([[[[-0.6,  0.8, -0.5],
                            [-0.5,  0.2,  1.2],
                            [ 1.4,  0.3, -0.2]]]]).astype("float64")
            
            # grid shape = [1, 3, 4, 2]
            grid = np.array(
                         [[[[ 0.2,  0.3],
                            [-0.4, -0.3],
                            [-0.9,  0.3],
                            [-0.9, -0.6]],
                           [[ 0.4,  0.1],
                            [ 0.9, -0.8],
                            [ 0.4,  0.5],
                            [ 0.5, -0.2]],
                           [[ 0.1, -0.8],
                            [-0.3, -1. ],
                            [ 0.7,  0.4],
                            [ 0.2,  0.8]]]]).astype("float64")
            
228
            
229 230 231 232 233 234 235 236
            x = paddle.to_tensor(x)
            grid = paddle.to_tensor(grid)
            y_t = F.grid_sample(
                x,
                grid,
                mode='bilinear',
                padding_mode='border',
                align_corners=True)
W
whs 已提交
237
            print(y_t)
238 239 240 241 242 243 244
            
            # output shape = [1, 1, 3, 4]
            # [[[[ 0.34   0.016  0.086 -0.448]
            #    [ 0.55  -0.076  0.35   0.59 ]
            #    [ 0.596  0.38   0.52   0.24 ]]]]
    """
    helper = LayerHelper("grid_sample", **locals())
245
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sample')
246
    check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
247 248
                             'grid_sample')

249
    _modes = ['bilinear', 'nearest']
250
    _padding_modes = ['zeros', 'reflection', 'border']
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    if mode not in _modes:
        raise ValueError(
            "The mode of grid sample function should be in {}, but got: {}".
            format(_modes, mode))
    if padding_mode not in _padding_modes:
        raise ValueError(
            "The padding mode of grid sample function should be in {}, but got: {}".
            format(_padding_modes, padding_mode))

    if not isinstance(align_corners, bool):
        raise ValueError("The align corners should be bool, but got: {}".format(
            align_corners))

    cudnn_version = get_cudnn_version()
    use_cudnn = False
    if (cudnn_version is not None
        ) and align_corners and mode == 'bilinear' and padding_mode == 'zeros':
        use_cudnn = True
W
whs 已提交
269 270 271
        # CUDNN always computes gradients for all inputs
        x.stop_gradient = False
        grid.stop_gradient = False
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    ipts = {'X': x, 'Grid': grid}
    attrs = {
        'mode': mode,
        'padding_mode': padding_mode,
        'align_corners': align_corners,
        'use_cudnn': use_cudnn
    }

    if in_dygraph_mode():
        attrs = ('mode', mode, 'padding_mode', padding_mode, 'align_corners',
                 align_corners, 'use_cudnn', use_cudnn)
        out = getattr(core.ops, 'grid_sampler')(x, grid, *attrs)
    else:
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='grid_sampler',
            inputs=ipts,
            attrs=attrs,
            outputs={'Output': out})
    return out
R
ruri 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308


def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel shuffle operation.
    See more details in :ref:`api_nn_vision_PixelShuffle` .
    Parameters:
        x(Tensor): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
        data_format (str): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
    Returns:
        Out(tensor): Reshaped tensor according to the new dimension.
    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.
    Examples:
        .. code-block:: python
309

R
ruri 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            x = np.random.randn(2, 9, 4, 4).astype(np.float32)
            x_var = paddle.to_tensor(x)
            out_var = F.pixel_shuffle(x_var, 3)
            out = out_var.numpy()
            # (2, 1, 12, 12)
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'pixel_shuffle')

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'."
                         "But recevie Attr(data_format): {} ".format(
                             data_format))

    if in_dygraph_mode():
        return core.ops.pixel_shuffle(x, "upscale_factor", upscale_factor,
                                      "data_format", data_format)

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor,
               "data_format": data_format})
    return out