test_multiprocess_dataloader_dataset.py 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
20
from paddle.io import Dataset, IterableDataset, TensorDataset, \
21
        ComposeDataset, ChainDataset, DataLoader, random_split, Subset
W
wanghuancoder 已提交
22
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
23

24 25 26 27
IMAGE_SIZE = 32


class RandomDataset(Dataset):
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return image, label


class RandomIterableDataset(IterableDataset):
43

44 45 46 47 48 49 50 51 52 53
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __iter__(self):
        for i in range(self.sample_num):
            np.random.seed(i)
            image = np.random.random([IMAGE_SIZE]).astype('float32')
            label = np.random.randint(0, 9, (1, )).astype('int64')
            yield image, label

54 55

class TestTensorDataset(unittest.TestCase):
56

57
    def run_main(self, num_workers, places):
58 59 60
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
61 62
        with fluid.dygraph.guard(place):
            input_np = np.random.random([16, 3, 4]).astype('float32')
63
            input = paddle.to_tensor(input_np)
64
            label_np = np.random.random([16, 1]).astype('int32')
65
            label = paddle.to_tensor(label_np)
66 67 68

            dataset = TensorDataset([input, label])
            assert len(dataset) == 16
69 70 71 72 73
            dataloader = DataLoader(dataset,
                                    places=place,
                                    num_workers=num_workers,
                                    batch_size=1,
                                    drop_last=True)
74 75 76 77 78 79

            for i, (input, label) in enumerate(dataloader()):
                assert len(input) == 1
                assert len(label) == 1
                assert input.shape == [1, 3, 4]
                assert label.shape == [1, 1]
W
wanghuancoder 已提交
80 81 82 83
                assert isinstance(input,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
                assert isinstance(label,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
84 85 86
                assert np.allclose(input.numpy(), input_np[i])
                assert np.allclose(label.numpy(), label_np[i])

W
wanghuancoder 已提交
87
    def func_test_main(self):
88 89 90
        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
91
        for p in places:
92 93
            self.run_main(num_workers=0, places=p)

W
wanghuancoder 已提交
94 95 96 97 98
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

99 100

class TestComposeDataset(unittest.TestCase):
101

W
wanghuancoder 已提交
102
    def func_test_main(self):
103 104
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

        dataset1 = RandomDataset(10)
        dataset2 = RandomDataset(10)
        dataset = ComposeDataset([dataset1, dataset2])
        assert len(dataset) == 10

        for i in range(len(dataset)):
            input1, label1, input2, label2 = dataset[i]
            input1_t, label1_t = dataset1[i]
            input2_t, label2_t = dataset2[i]
            assert np.allclose(input1, input1_t)
            assert np.allclose(label1, label1_t)
            assert np.allclose(input2, input2_t)
            assert np.allclose(label2, label2_t)

W
wanghuancoder 已提交
120 121 122 123 124
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

125

126
class TestRandomSplitApi(unittest.TestCase):
127

W
wanghuancoder 已提交
128
    def func_test_main(self):
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        dataset1, dataset2 = paddle.io.random_split(range(5), [1, 4])

        self.assertTrue(len(dataset1) == 1)
        self.assertTrue(len(dataset2) == 4)

        elements_list = list(range(5))

        for _, val in enumerate(dataset1):
            elements_list.remove(val)

        for _, val in enumerate(dataset2):
            elements_list.remove(val)

        self.assertTrue(len(elements_list) == 0)

W
wanghuancoder 已提交
147 148 149 150 151
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

152 153

class TestRandomSplitError(unittest.TestCase):
154

W
wanghuancoder 已提交
155
    def func_test_errors(self):
156 157 158 159 160 161 162
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        self.assertRaises(ValueError, paddle.io.random_split, range(5), [3, 8])
        self.assertRaises(ValueError, paddle.io.random_split, range(5), [8])
        self.assertRaises(ValueError, paddle.io.random_split, range(5), [])

W
wanghuancoder 已提交
163 164 165 166 167
    def test_errors(self):
        with _test_eager_guard():
            self.func_test_errors()
        self.func_test_errors()

168 169

class TestSubsetDataset(unittest.TestCase):
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    def run_main(self, num_workers, places):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        input_np = np.random.random([5, 3, 4]).astype('float32')
        input = paddle.to_tensor(input_np)
        label_np = np.random.random([5, 1]).astype('int32')
        label = paddle.to_tensor(label_np)

        dataset = TensorDataset([input, label])
        even_subset = paddle.io.Subset(dataset, [0, 2, 4])
        odd_subset = paddle.io.Subset(dataset, [1, 3])

        assert len(dataset) == 5

        def prepare_dataloader(dataset):
187 188 189 190 191
            return DataLoader(dataset,
                              places=places,
                              num_workers=num_workers,
                              batch_size=1,
                              drop_last=True)
192 193 194 195 196 197 198 199 200 201

        dataloader = prepare_dataloader(dataset)
        dataloader_even = prepare_dataloader(even_subset)
        dataloader_odd = prepare_dataloader(odd_subset)

        def assert_basic(input, label):
            assert len(input) == 1
            assert len(label) == 1
            assert input.shape == [1, 3, 4]
            assert label.shape == [1, 1]
W
wanghuancoder 已提交
202 203 204 205
            assert isinstance(input,
                              (fluid.core.VarBase, fluid.core.eager.Tensor))
            assert isinstance(label,
                              (fluid.core.VarBase, fluid.core.eager.Tensor))
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

        elements_list = list()
        for _, (input, label) in enumerate(dataloader()):
            assert_basic(input, label)
            elements_list.append(label)

        for _, (input, label) in enumerate(dataloader_even()):
            assert_basic(input, label)
            elements_list.remove(label)

        odd_list = list()
        for _, (input, label) in enumerate(dataloader_odd()):
            assert_basic(input, label)
            odd_list.append(label)

        self.assertEqual(odd_list, elements_list)

W
wanghuancoder 已提交
223
    def func_test_main(self):
224 225 226 227 228 229 230 231 232
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
        for p in places:
            self.run_main(num_workers=0, places=p)

W
wanghuancoder 已提交
233 234 235 236 237
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

238

239
class TestChainDataset(unittest.TestCase):
240

241
    def run_main(self, num_workers, places):
242 243
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

        dataset1 = RandomIterableDataset(10)
        dataset2 = RandomIterableDataset(10)
        dataset = ChainDataset([dataset1, dataset2])

        samples = []
        for data in iter(dataset):
            samples.append(data)
        assert len(samples) == 20

        idx = 0
        for image, label in iter(dataset1):
            assert np.allclose(image, samples[idx][0])
            assert np.allclose(label, samples[idx][1])
            idx += 1
        for image, label in iter(dataset2):
            assert np.allclose(image, samples[idx][0])
            assert np.allclose(label, samples[idx][1])
            idx += 1

W
wanghuancoder 已提交
264
    def func_test_main(self):
265 266 267
        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
268
        for p in places:
269
            self.run_main(num_workers=0, places=p)
270

W
wanghuancoder 已提交
271 272 273 274 275
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

276

277
class NumpyMixTensorDataset(Dataset):
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return paddle.to_tensor(image, place=paddle.CPUPlace()), label


class TestNumpyMixTensorDataset(TestTensorDataset):
293

294 295 296 297 298 299 300
    def run_main(self, num_workers, places):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            dataset = NumpyMixTensorDataset(16)
            assert len(dataset) == 16
301 302 303 304 305
            dataloader = DataLoader(dataset,
                                    places=place,
                                    num_workers=num_workers,
                                    batch_size=1,
                                    drop_last=True)
306 307 308 309 310 311

            for i, (input, label) in enumerate(dataloader()):
                assert len(input) == 1
                assert len(label) == 1
                assert input.shape == [1, IMAGE_SIZE]
                assert label.shape == [1, 1]
W
wanghuancoder 已提交
312 313 314 315
                assert isinstance(input,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
                assert isinstance(label,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
316 317


318
class ComplextDataset(Dataset):
319

320 321 322 323 324 325 326
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
327 328 329 330
        return (3.1, 'abc',
                paddle.to_tensor(np.random.random([IMAGE_SIZE
                                                   ]).astype('float32'),
                                 place=paddle.CPUPlace()),
331 332 333 334 335 336 337
                [1, np.random.random([2]).astype('float32')], {
                    'a': 2.0,
                    'b': np.random.random([2]).astype('float32')
                })


class TestComplextDataset(unittest.TestCase):
338

339 340 341 342 343 344 345
    def run_main(self, num_workers):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            dataset = ComplextDataset(16)
            assert len(dataset) == 16
346 347 348 349 350
            dataloader = DataLoader(dataset,
                                    places=place,
                                    num_workers=num_workers,
                                    batch_size=2,
                                    drop_last=True)
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

            for i, data in enumerate(dataloader()):
                assert len(data) == 5
                # data[0]: collate 3.1
                assert data[0].shape == [2]
                assert isinstance(data[1], list)
                # data[1]: collate 'abc'
                assert len(data[1]) == 2
                assert isinstance(data[1][0], str)
                assert isinstance(data[1][1], str)
                # data[2]: collate tensor
                assert data[2].shape == [2, IMAGE_SIZE]
                # data[3]: collate list
                assert isinstance(data[3], list)
                assert data[3][0].shape == [2]
                assert data[3][1].shape == [2, 2]
                # data[4]: collate dict
                assert isinstance(data[4], dict)
                assert data[4]['a'].shape == [2]
                assert data[4]['b'].shape == [2, 2]

W
wanghuancoder 已提交
372
    def func_test_main(self):
373 374 375
        for num_workers in [0, 2]:
            self.run_main(num_workers)

W
wanghuancoder 已提交
376 377 378 379 380
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

381

382
class SingleFieldDataset(Dataset):
383

384 385 386 387 388 389 390 391 392 393 394
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        return np.random.random((2, 3)).astype('float32')


class TestSingleFieldDataset(unittest.TestCase):
395

396 397 398 399 400 401 402 403 404 405
    def init_dataset(self):
        self.sample_num = 16
        self.dataset = SingleFieldDataset(self.sample_num)

    def run_main(self, num_workers):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            self.init_dataset()
406 407 408 409 410
            dataloader = DataLoader(self.dataset,
                                    places=place,
                                    num_workers=num_workers,
                                    batch_size=2,
                                    drop_last=True)
411 412

            for i, data in enumerate(dataloader()):
W
wanghuancoder 已提交
413 414
                assert isinstance(data,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
415 416
                assert data.shape == [2, 2, 3]

W
wanghuancoder 已提交
417
    def func_test_main(self):
418 419 420
        for num_workers in [0, 2]:
            self.run_main(num_workers)

W
wanghuancoder 已提交
421 422 423 424 425
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

426 427

class SingleFieldIterableDataset(IterableDataset):
428

429 430 431 432 433 434 435 436 437
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __iter__(self):
        for _ in range(self.sample_num):
            yield np.random.random((2, 3)).astype('float32')


class TestSingleFieldIterableDataset(TestSingleFieldDataset):
438

439 440 441 442 443
    def init_dataset(self):
        self.sample_num = 16
        self.dataset = SingleFieldIterableDataset(self.sample_num)


444
class TestDataLoaderGenerateStates(unittest.TestCase):
445

446 447 448 449 450 451
    def setUp(self):
        self.inputs = [(0, 1), (0, 2), (1, 3)]
        self.outputs = [[1835504127, 1731038949, 1320224556, 2330041505],
                        [2834126987, 2358157858, 1860244682, 1437227251],
                        [457190280, 2660306227, 859341110, 354512857]]

W
wanghuancoder 已提交
452
    def func_test_main(self):
453 454 455 456 457
        from paddle.fluid.dataloader.worker import _generate_states
        for inp, outp in zip(self.inputs, self.outputs):
            out = _generate_states(*inp)
            assert out == outp

W
wanghuancoder 已提交
458 459 460 461 462
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

463

464
class TestDatasetWithDropLast(unittest.TestCase):
465

466 467 468 469 470
    def run_main(self, dataset, num_samples, batch_size):
        for num_workers in [0, 1]:
            for drop_last in [True, False]:
                steps = (num_samples + (1 - int(drop_last)) * \
                        (batch_size - 1)) // batch_size
471 472 473 474
                dataloader = DataLoader(dataset,
                                        batch_size=batch_size,
                                        drop_last=drop_last,
                                        num_workers=num_workers)
475 476 477 478 479
                datas = []
                for data in dataloader:
                    datas.append(data)
                assert len(datas) == steps

W
wanghuancoder 已提交
480
    def func_test_map_dataset(self):
481 482 483
        dataset = RandomDataset(10)
        self.run_main(dataset, 10, 3)

W
wanghuancoder 已提交
484 485 486 487 488 489
    def test_map_dataset(self):
        with _test_eager_guard():
            self.func_test_map_dataset()
        self.func_test_map_dataset()

    def func_test_iterable_dataset(self):
490 491 492
        dataset = RandomIterableDataset(10)
        self.run_main(dataset, 10, 3)

W
wanghuancoder 已提交
493 494 495 496 497
    def test_iterable_dataset(self):
        with _test_eager_guard():
            self.func_test_iterable_dataset()
        self.func_test_iterable_dataset()

498

499 500
if __name__ == '__main__':
    unittest.main()