test_multiprocess_dataloader_dataset.py 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
22
from paddle.io import Dataset, IterableDataset, TensorDataset, \
23
        ComposeDataset, ChainDataset, DataLoader, random_split, Subset
W
wanghuancoder 已提交
24
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
IMAGE_SIZE = 32


class RandomDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return image, label


class RandomIterableDataset(IterableDataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __iter__(self):
        for i in range(self.sample_num):
            np.random.seed(i)
            image = np.random.random([IMAGE_SIZE]).astype('float32')
            label = np.random.randint(0, 9, (1, )).astype('int64')
            yield image, label

54 55 56

class TestTensorDataset(unittest.TestCase):
    def run_main(self, num_workers, places):
57 58 59
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
60 61
        with fluid.dygraph.guard(place):
            input_np = np.random.random([16, 3, 4]).astype('float32')
62
            input = paddle.to_tensor(input_np)
63
            label_np = np.random.random([16, 1]).astype('int32')
64
            label = paddle.to_tensor(label_np)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

            dataset = TensorDataset([input, label])
            assert len(dataset) == 16
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=num_workers,
                batch_size=1,
                drop_last=True)

            for i, (input, label) in enumerate(dataloader()):
                assert len(input) == 1
                assert len(label) == 1
                assert input.shape == [1, 3, 4]
                assert label.shape == [1, 1]
W
wanghuancoder 已提交
80 81 82 83
                assert isinstance(input,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
                assert isinstance(label,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
84 85 86
                assert np.allclose(input.numpy(), input_np[i])
                assert np.allclose(label.numpy(), label_np[i])

W
wanghuancoder 已提交
87
    def func_test_main(self):
88 89 90
        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
91
        for p in places:
92 93
            self.run_main(num_workers=0, places=p)

W
wanghuancoder 已提交
94 95 96 97 98
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

99 100

class TestComposeDataset(unittest.TestCase):
W
wanghuancoder 已提交
101
    def func_test_main(self):
102 103
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

        dataset1 = RandomDataset(10)
        dataset2 = RandomDataset(10)
        dataset = ComposeDataset([dataset1, dataset2])
        assert len(dataset) == 10

        for i in range(len(dataset)):
            input1, label1, input2, label2 = dataset[i]
            input1_t, label1_t = dataset1[i]
            input2_t, label2_t = dataset2[i]
            assert np.allclose(input1, input1_t)
            assert np.allclose(label1, label1_t)
            assert np.allclose(input2, input2_t)
            assert np.allclose(label2, label2_t)

W
wanghuancoder 已提交
119 120 121 122 123
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

124

125
class TestRandomSplitApi(unittest.TestCase):
W
wanghuancoder 已提交
126
    def func_test_main(self):
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        dataset1, dataset2 = paddle.io.random_split(range(5), [1, 4])

        self.assertTrue(len(dataset1) == 1)
        self.assertTrue(len(dataset2) == 4)

        elements_list = list(range(5))

        for _, val in enumerate(dataset1):
            elements_list.remove(val)

        for _, val in enumerate(dataset2):
            elements_list.remove(val)

        self.assertTrue(len(elements_list) == 0)

W
wanghuancoder 已提交
145 146 147 148 149
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

150 151

class TestRandomSplitError(unittest.TestCase):
W
wanghuancoder 已提交
152
    def func_test_errors(self):
153 154 155 156 157 158 159
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        self.assertRaises(ValueError, paddle.io.random_split, range(5), [3, 8])
        self.assertRaises(ValueError, paddle.io.random_split, range(5), [8])
        self.assertRaises(ValueError, paddle.io.random_split, range(5), [])

W
wanghuancoder 已提交
160 161 162 163 164
    def test_errors(self):
        with _test_eager_guard():
            self.func_test_errors()
        self.func_test_errors()

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

class TestSubsetDataset(unittest.TestCase):
    def run_main(self, num_workers, places):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        input_np = np.random.random([5, 3, 4]).astype('float32')
        input = paddle.to_tensor(input_np)
        label_np = np.random.random([5, 1]).astype('int32')
        label = paddle.to_tensor(label_np)

        dataset = TensorDataset([input, label])
        even_subset = paddle.io.Subset(dataset, [0, 2, 4])
        odd_subset = paddle.io.Subset(dataset, [1, 3])

        assert len(dataset) == 5

        def prepare_dataloader(dataset):
            return DataLoader(
                dataset,
                places=places,
                num_workers=num_workers,
                batch_size=1,
                drop_last=True)

        dataloader = prepare_dataloader(dataset)
        dataloader_even = prepare_dataloader(even_subset)
        dataloader_odd = prepare_dataloader(odd_subset)

        def assert_basic(input, label):
            assert len(input) == 1
            assert len(label) == 1
            assert input.shape == [1, 3, 4]
            assert label.shape == [1, 1]
W
wanghuancoder 已提交
199 200 201 202
            assert isinstance(input,
                              (fluid.core.VarBase, fluid.core.eager.Tensor))
            assert isinstance(label,
                              (fluid.core.VarBase, fluid.core.eager.Tensor))
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        elements_list = list()
        for _, (input, label) in enumerate(dataloader()):
            assert_basic(input, label)
            elements_list.append(label)

        for _, (input, label) in enumerate(dataloader_even()):
            assert_basic(input, label)
            elements_list.remove(label)

        odd_list = list()
        for _, (input, label) in enumerate(dataloader_odd()):
            assert_basic(input, label)
            odd_list.append(label)

        self.assertEqual(odd_list, elements_list)

W
wanghuancoder 已提交
220
    def func_test_main(self):
221 222 223 224 225 226 227 228 229
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
        for p in places:
            self.run_main(num_workers=0, places=p)

W
wanghuancoder 已提交
230 231 232 233 234
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

235

236 237
class TestChainDataset(unittest.TestCase):
    def run_main(self, num_workers, places):
238 239
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

        dataset1 = RandomIterableDataset(10)
        dataset2 = RandomIterableDataset(10)
        dataset = ChainDataset([dataset1, dataset2])

        samples = []
        for data in iter(dataset):
            samples.append(data)
        assert len(samples) == 20

        idx = 0
        for image, label in iter(dataset1):
            assert np.allclose(image, samples[idx][0])
            assert np.allclose(label, samples[idx][1])
            idx += 1
        for image, label in iter(dataset2):
            assert np.allclose(image, samples[idx][0])
            assert np.allclose(label, samples[idx][1])
            idx += 1

W
wanghuancoder 已提交
260
    def func_test_main(self):
261 262 263
        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
264
        for p in places:
265
            self.run_main(num_workers=0, places=p)
266

W
wanghuancoder 已提交
267 268 269 270 271
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
class NumpyMixTensorDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return paddle.to_tensor(image, place=paddle.CPUPlace()), label


class TestNumpyMixTensorDataset(TestTensorDataset):
    def run_main(self, num_workers, places):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            dataset = NumpyMixTensorDataset(16)
            assert len(dataset) == 16
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=num_workers,
                batch_size=1,
                drop_last=True)

            for i, (input, label) in enumerate(dataloader()):
                assert len(input) == 1
                assert len(label) == 1
                assert input.shape == [1, IMAGE_SIZE]
                assert label.shape == [1, 1]
W
wanghuancoder 已提交
307 308 309 310
                assert isinstance(input,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
                assert isinstance(label,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
311 312


313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
class ComplextDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        return (3.1, 'abc', paddle.to_tensor(
            np.random.random([IMAGE_SIZE]).astype('float32'),
            place=paddle.CPUPlace()),
                [1, np.random.random([2]).astype('float32')], {
                    'a': 2.0,
                    'b': np.random.random([2]).astype('float32')
                })


class TestComplextDataset(unittest.TestCase):
    def run_main(self, num_workers):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            dataset = ComplextDataset(16)
            assert len(dataset) == 16
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=num_workers,
                batch_size=2,
                drop_last=True)

            for i, data in enumerate(dataloader()):
                assert len(data) == 5
                # data[0]: collate 3.1
                assert data[0].shape == [2]
                assert isinstance(data[1], list)
                # data[1]: collate 'abc'
                assert len(data[1]) == 2
                assert isinstance(data[1][0], str)
                assert isinstance(data[1][1], str)
                # data[2]: collate tensor
                assert data[2].shape == [2, IMAGE_SIZE]
                # data[3]: collate list
                assert isinstance(data[3], list)
                assert data[3][0].shape == [2]
                assert data[3][1].shape == [2, 2]
                # data[4]: collate dict
                assert isinstance(data[4], dict)
                assert data[4]['a'].shape == [2]
                assert data[4]['b'].shape == [2, 2]

W
wanghuancoder 已提交
365
    def func_test_main(self):
366 367 368
        for num_workers in [0, 2]:
            self.run_main(num_workers)

W
wanghuancoder 已提交
369 370 371 372 373
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
class SingleFieldDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        return np.random.random((2, 3)).astype('float32')


class TestSingleFieldDataset(unittest.TestCase):
    def init_dataset(self):
        self.sample_num = 16
        self.dataset = SingleFieldDataset(self.sample_num)

    def run_main(self, num_workers):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            self.init_dataset()
            dataloader = DataLoader(
                self.dataset,
                places=place,
                num_workers=num_workers,
                batch_size=2,
                drop_last=True)

            for i, data in enumerate(dataloader()):
W
wanghuancoder 已提交
405 406
                assert isinstance(data,
                                  (fluid.core.VarBase, fluid.core.eager.Tensor))
407 408
                assert data.shape == [2, 2, 3]

W
wanghuancoder 已提交
409
    def func_test_main(self):
410 411 412
        for num_workers in [0, 2]:
            self.run_main(num_workers)

W
wanghuancoder 已提交
413 414 415 416 417
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

class SingleFieldIterableDataset(IterableDataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __iter__(self):
        for _ in range(self.sample_num):
            yield np.random.random((2, 3)).astype('float32')


class TestSingleFieldIterableDataset(TestSingleFieldDataset):
    def init_dataset(self):
        self.sample_num = 16
        self.dataset = SingleFieldIterableDataset(self.sample_num)


434 435 436 437 438 439 440
class TestDataLoaderGenerateStates(unittest.TestCase):
    def setUp(self):
        self.inputs = [(0, 1), (0, 2), (1, 3)]
        self.outputs = [[1835504127, 1731038949, 1320224556, 2330041505],
                        [2834126987, 2358157858, 1860244682, 1437227251],
                        [457190280, 2660306227, 859341110, 354512857]]

W
wanghuancoder 已提交
441
    def func_test_main(self):
442 443 444 445 446
        from paddle.fluid.dataloader.worker import _generate_states
        for inp, outp in zip(self.inputs, self.outputs):
            out = _generate_states(*inp)
            assert out == outp

W
wanghuancoder 已提交
447 448 449 450 451
    def test_main(self):
        with _test_eager_guard():
            self.func_test_main()
        self.func_test_main()

452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
class TestDatasetWithDropLast(unittest.TestCase):
    def run_main(self, dataset, num_samples, batch_size):
        for num_workers in [0, 1]:
            for drop_last in [True, False]:
                steps = (num_samples + (1 - int(drop_last)) * \
                        (batch_size - 1)) // batch_size
                dataloader = DataLoader(
                    dataset,
                    batch_size=batch_size,
                    drop_last=drop_last,
                    num_workers=num_workers)
                datas = []
                for data in dataloader:
                    datas.append(data)
                assert len(datas) == steps

W
wanghuancoder 已提交
469
    def func_test_map_dataset(self):
470 471 472
        dataset = RandomDataset(10)
        self.run_main(dataset, 10, 3)

W
wanghuancoder 已提交
473 474 475 476 477 478
    def test_map_dataset(self):
        with _test_eager_guard():
            self.func_test_map_dataset()
        self.func_test_map_dataset()

    def func_test_iterable_dataset(self):
479 480 481
        dataset = RandomIterableDataset(10)
        self.run_main(dataset, 10, 3)

W
wanghuancoder 已提交
482 483 484 485 486
    def test_iterable_dataset(self):
        with _test_eager_guard():
            self.func_test_iterable_dataset()
        self.func_test_iterable_dataset()

487

488 489
if __name__ == '__main__':
    unittest.main()