heter_context.h 8.0 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
Thunderbrook 已提交
17
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
18

Y
yaoxuefeng 已提交
19
#include <algorithm>
T
Thunderbrook 已提交
20 21 22 23
#include <map>
#include <unordered_map>
#include <vector>

T
Thunderbrook 已提交
24
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
25
#include "common_value.h"  // NOLINT
T
Thunderbrook 已提交
26 27 28 29 30 31
#endif

#ifdef PADDLE_WITH_PSCORE
#include "paddle/fluid/distributed/table/depends/large_scale_kv.h"
#endif

32
#include "paddle/fluid/distributed/thirdparty/round_robin.h"
T
Thunderbrook 已提交
33 34 35 36 37 38 39 40
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/scope.h"

namespace paddle {
namespace framework {

class HeterContext {
 public:
41
  ~HeterContext() {
42 43 44 45 46 47 48 49 50 51 52 53
    if (!multi_mf_dim_) {
      for (size_t i = 0; i < mutex_.size(); ++i) {
        delete mutex_[i];
      }
      mutex_.clear();
    } else {
      for (size_t i = 0; i < dim_mutex_.size(); ++i) {
        for (size_t j = 0; j < dim_mutex_[i].size(); j++) {
          delete dim_mutex_[i][j];
        }
        dim_mutex_[i].clear();
      }
54 55
    }
  }
T
Thunderbrook 已提交
56 57
  Scope* scope_{nullptr};
  std::vector<std::vector<FeatureKey>> feature_keys_;
58 59
  std::vector<std::vector<std::vector<FeatureKey>>> feature_dim_keys_;

T
Thunderbrook 已提交
60
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
61
  std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> value_ptr_;
62 63 64 65
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      value_dim_ptr_;
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      device_dim_ptr_;
T
Thunderbrook 已提交
66 67 68
#endif
#ifdef PADDLE_WITH_PSCORE
  std::vector<std::vector<paddle::distributed::VALUE*>> value_ptr_;
69 70 71 72
  std::vector<std::vector<std::vector<paddle::distributed::VALUE*>>>
      value_dim_ptr_;
  std::vector<std::vector<std::vector<paddle::distributed::VALUE*>>>
      device_dim_ptr_;
T
Thunderbrook 已提交
73
#endif
74 75
  std::vector<std::vector<FeatureValue>> device_values_;
  std::vector<std::vector<FeatureKey>> device_keys_;
76 77
  std::vector<std::vector<std::vector<FeatureKey>>> device_dim_keys_;
  std::vector<std::vector<std::vector<FeatureValue>>> device_dim_values_;
78
  std::vector<std::mutex*> mutex_;
79 80
  std::vector<std::vector<std::mutex*>> dim_mutex_;
  int multi_mf_dim_ = 0;
81

Y
yaoxuefeng 已提交
82
  uint32_t shard_num_ = 37;
T
Thunderbrook 已提交
83 84 85 86 87 88 89
  uint64_t size() {
    uint64_t total_size = 0;
    for (auto& keys : feature_keys_) {
      total_size += keys.size();
    }
    return total_size;
  }
Y
yaoxuefeng 已提交
90 91
  void SetShardNum(uint32_t shard_num) { shard_num_ = shard_num; }
  uint32_t ShardNum() { return shard_num_; }
92 93 94 95 96 97 98 99 100 101 102 103
  void init(int shard_num, int device_num) {
    shard_num_ = shard_num;
    feature_keys_.resize(shard_num_);
    value_ptr_.resize(shard_num_);

    device_values_.resize(device_num);
    device_keys_.resize(device_num);
    mutex_.resize(device_num);
    for (size_t i = 0; i < mutex_.size(); ++i) {
      mutex_[i] = new std::mutex();
    }
  }
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118
  void init(int shard_num, int device_num, int dim_num) {
    shard_num_ = shard_num;
    feature_keys_.resize(shard_num_);
    feature_dim_keys_.resize(shard_num_);
    value_ptr_.resize(shard_num_);
    value_dim_ptr_.resize(shard_num_);
    for (size_t i = 0; i < feature_dim_keys_.size(); i++) {
      feature_dim_keys_[i].resize(dim_num);
      value_dim_ptr_[i].resize(dim_num);
      if (i == 0) {
        for (int j = 0; j < dim_num; j++) {
          feature_dim_keys_[i][j].push_back(0);
        }
      }
119
    }
120 121 122 123 124 125 126 127 128 129
    device_values_.resize(device_num);
    device_dim_values_.resize(device_num);
    device_keys_.resize(device_num);

    device_dim_keys_.resize(device_num);
    device_dim_ptr_.resize(device_num);
    mutex_.resize(device_num);
    dim_mutex_.resize(device_num);
    for (size_t i = 0; i < mutex_.size(); ++i) {
      mutex_[i] = new std::mutex();
130
    }
131 132 133 134 135
    for (size_t i = 0; i < dim_mutex_.size(); ++i) {
      dim_mutex_[i].resize(dim_num);
      for (int j = 0; j < dim_num; j++) {
        dim_mutex_[i][j] = new std::mutex();
      }
136
    }
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    multi_mf_dim_ = dim_num;
  }

  void Reset() {
    if (!multi_mf_dim_) {
      for (size_t i = 0; i < feature_keys_.size(); ++i) {
        feature_keys_[i].clear();
      }
      for (size_t i = 0; i < value_ptr_.size(); ++i) {
        value_ptr_[i].clear();
      }
      for (size_t i = 0; i < device_values_.size(); ++i) {
        device_values_[i].clear();
      }
      for (size_t i = 0; i < device_keys_.size(); ++i) {
        device_keys_[i].clear();
      }
    } else {
      VLOG(3) << "Reset gpu task with dynamic mf dimention";
      for (size_t i = 0; i < feature_dim_keys_.size(); i++) {
        for (size_t j = 0; j < feature_dim_keys_[i].size(); j++) {
          feature_dim_keys_[i][j].clear();
        }
      }
      for (size_t i = 0; i < value_dim_ptr_.size(); i++) {
        for (size_t j = 0; j < value_dim_ptr_[i].size(); j++) {
          value_dim_ptr_[i][j].clear();
        }
      }

      for (size_t i = 0; i < device_dim_keys_.size(); i++) {
        for (size_t j = 0; j < device_dim_keys_[i].size(); j++) {
          device_dim_keys_[i][j].clear();
        }
      }
      for (size_t i = 0; i < device_dim_ptr_.size(); i++) {
        for (size_t j = 0; j < device_dim_ptr_[i].size(); j++) {
          device_dim_ptr_[i][j].clear();
        }
      }
177 178
    }
  }
179 180
  void batch_add_keys(
      const std::vector<std::unordered_set<uint64_t>>& thread_keys) {
Y
yaoxuefeng 已提交
181 182 183 184 185 186
    assert(thread_keys.size() == feature_keys_.size());

    for (uint32_t i = 0; i < shard_num_; i++) {
      int idx = 0;
      idx = feature_keys_[i].size();
      feature_keys_[i].resize(feature_keys_[i].size() + thread_keys[i].size());
187 188
      std::copy(thread_keys[i].begin(), thread_keys[i].end(),
                feature_keys_[i].begin() + idx);
Y
yaoxuefeng 已提交
189 190
    }
  }
191

192
  void batch_add_keys(int shard_num,
193
                      const robin_hood::unordered_set<uint64_t>& shard_keys) {
194 195 196 197 198 199 200
    int idx = feature_keys_[shard_num].size();
    feature_keys_[shard_num].resize(feature_keys_[shard_num].size() +
                                    shard_keys.size());
    std::copy(shard_keys.begin(), shard_keys.end(),
              feature_keys_[shard_num].begin() + idx);
  }

201 202 203 204 205 206 207 208 209
  void batch_add_keys(int shard_num, int dim_id,
                      const robin_hood::unordered_set<uint64_t>& shard_keys) {
    int idx = feature_dim_keys_[shard_num][dim_id].size();
    feature_dim_keys_[shard_num][dim_id].resize(
        feature_dim_keys_[shard_num][dim_id].size() + shard_keys.size());
    std::copy(shard_keys.begin(), shard_keys.end(),
              feature_dim_keys_[shard_num][dim_id].begin() + idx);
  }

Y
yaoxuefeng 已提交
210 211 212 213 214 215 216 217 218
  void UniqueKeys() {
    std::vector<std::thread> threads;
    auto unique_func = [this](int i) {
      auto& cur_keys = feature_keys_[i];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    auto unique_dynamic_mf_func = [this](int i, int j) {
      auto& cur_keys = feature_dim_keys_[i][j];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
    if (!multi_mf_dim_) {
      for (uint32_t i = 0; i < shard_num_; i++) {
        threads.push_back(std::thread(unique_func, i));
      }
    } else {
      for (uint32_t i = 0; i < shard_num_; i++) {
        for (int j = 0; j < multi_mf_dim_; j++) {
          threads.push_back(std::thread(unique_dynamic_mf_func, i, j));
        }
      }
      VLOG(3) << "heter_context unique keys with dynamic mf dimention";
Y
yaoxuefeng 已提交
237 238 239 240 241
    }
    for (std::thread& t : threads) {
      t.join();
    }
  }
T
Thunderbrook 已提交
242 243 244 245 246
};

}  // end namespace framework
}  // end namespace paddle
#endif