parallel.py 15.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22
import paddle
23 24 25 26 27

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
L
lilong12 已提交
28
from paddle.fluid.framework import in_dygraph_mode
29 30
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
X
xiongkun 已提交
31
from paddle.distributed.fleet.launch_utils import check_backend
32
from paddle.fluid.dygraph.parallel import ParallelEnv
33
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready  # noqa: F401
34
from paddle.distributed import collective
L
lilong12 已提交
35 36 37
from paddle.distributed.collective import _set_group_map
from paddle.distributed.collective import _set_group_map_by_name
from paddle.distributed.collective import _get_group_map_by_name
38 39 40
from paddle.distributed.collective import _group_map_by_name
from paddle.distributed.collective import _default_group_name
from paddle.distributed.collective import _valid_backend_list
L
lilong12 已提交
41 42
from paddle.distributed.collective import _set_default_backend
from paddle.distributed.collective import _set_default_store
43 44
from paddle.distributed.collective import _new_process_group_impl
from paddle.distributed.collective import Group
45
from paddle.distributed.collective import _set_group_map_backend
46

47
__all__ = []
48 49 50

ParallelStrategy = core.ParallelStrategy

51
# NOTE(chenweihang): Maintain a global parallel env to avoid
52 53 54 55 56 57 58 59 60 61
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

62

63
def _start_kv_server(port, http_server_d, size):
64
    from paddle.distributed.fleet.utils.http_server import KVServer
65
    http_server = KVServer(int(port), size=size)
66
    http_server.start()
67
    wait_seconds = 3
L
lilong12 已提交
68
    while http_server_d.get("running", False) or not http_server.should_stop():
69 70 71 72
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
73 74
def _is_cpuonly(backend):
    check_backend(backend)
75 76 77 78
    if backend in [
            'auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl'
    ] and (core.is_compiled_with_cuda() or core.is_compiled_with_xpu()
           or core.is_compiled_with_npu() or core.is_compiled_with_mlu()):
79

80 81 82 83 84 85
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
86 87 88 89 90 91 92 93
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
        raise ValueError("paddle.distributed initialize error, "
                         "environment variable %s is needed, but not set." %
                         var_name)


X
xiongkun 已提交
94
def init_parallel_env():
95
    """
96
    Initialize parallel training environment in dynamic graph mode.
97

98
    .. note::
99
        Now initialize both `NCCL` and `GLOO` contexts for communication.
100

101 102 103 104 105
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

106 107 108 109 110
    Returns:
        None
        
    Examples:
        .. code-block:: python
111
            # required: gpu
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
127
                # 1. initialize parallel environment
128 129
                dist.init_parallel_env()

130
                # 2. create data parallel layer & optimizer
131 132 133 134 135 136 137
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

138
                # 3. run layer
139 140 141 142 143 144 145 146 147 148 149 150 151 152
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

153 154 155 156 157 158 159 160 161 162 163
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
164
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to
165
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
166 167
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
168 169 170 171
    # 1. gpu xpu check, must be gpu or xpu,
    if not (is_cpu_only or core.is_compiled_with_cuda()
            or core.is_compiled_with_xpu() or core.is_compiled_with_npu()
            or core.is_compiled_with_mlu()):
172
        raise NotImplementedError(
173
            "If you want to use CPU-only version, please use 'gloo' as backend")
174

175
    if not is_cpu_only and core.is_compiled_with_cuda():
176
        _check_var_exists("FLAGS_selected_gpus")
177
        backend = "nccl" if backend == "auto" else backend
178
    elif not is_cpu_only and core.is_compiled_with_xpu():
179
        _check_var_exists('FLAGS_selected_xpus')
180
        backend = "bkcl" if backend == "auto" else backend
K
kuizhiqing 已提交
181 182
    elif not is_cpu_only and core.is_compiled_with_npu():
        _check_var_exists('FLAGS_selected_npus')
183
        backend = "hccl" if backend == "auto" else backend
184 185
    elif not is_cpu_only and core.is_compiled_with_mlu():
        _check_var_exists('FLAGS_selected_mlus')
186
        backend = "cncl" if backend == "auto" else backend
187

188 189 190 191 192
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
    if is_cpu_only:
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
L
lilong12 已提交
213 214 215 216
    if backend in _valid_backend_list and in_dygraph_mode():
        if _default_group_name in _get_group_map_by_name():
            return _get_group_map_by_name()[_default_group_name]
        _set_default_backend(backend)
217 218 219 220 221 222 223 224
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
            "required to create a process group.")
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
225 226
        endpoints = ":".join([master_addr, master_port
                              ]) if master_addr and master_port else None
227
        if endpoints is None:
228 229 230 231 232 233 234 235 236 237 238
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
            "with paddle.distributed.run module.")
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
239
        stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900"))
240 241 242 243
        default_store = core.TCPStore(master_addr,
                                      master_port,
                                      is_master,
                                      world_size,
G
gongweibao 已提交
244
                                      timeout=stop_check_timeout)
L
lilong12 已提交
245
        _set_default_store(default_store)
246 247 248 249 250 251
        pg = _new_process_group_impl(backend,
                                     default_store,
                                     rank,
                                     world_size,
                                     _default_group_name,
                                     pg_options=None)
252
        ranks = list(range(world_size))
253 254 255 256 257 258
        group = Group(rank,
                      world_size,
                      id=0,
                      ranks=ranks,
                      pg=pg,
                      name=_default_group_name)
L
lilong12 已提交
259 260
        _set_group_map_by_name(_default_group_name, group)
        _set_group_map(0, group)
261
        _set_group_map_backend(group, backend)
262
        parallel_helper._set_parallel_ctx(True)
263 264

        paddle.distributed.barrier(group=group)
265 266
        return group

K
kuizhiqing 已提交
267
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
268
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
269
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
270
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
271 272 273 274 275 276 277 278
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
279 280
            if backend == "heter":
                size = {'_worker': len(node_num)}
281 282
            http_server = Process(target=_start_kv_server,
                                  args=(int(ep_rank_0[1]), http_server_d, size))
L
lilong12 已提交
283 284 285
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
286 287

    # 4. init NCCL ParallelStrategy
288
    strategy = ParallelStrategy()
289 290
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
291 292 293 294
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
295
    strategy.nrings = parallel_env.nrings
296

K
kuizhiqing 已提交
297
    # init nccl or hccl or bkcl or heter context
298 299 300
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
            core.GLOOParallelContext(strategy, place))
K
kuizhiqing 已提交
301 302 303
    elif (backend == "heter"):
        parallel_helper._set_parallel_ctx(
            core.HeterParallelContext(strategy, parallel_env.device_id))
304
    elif core.is_compiled_with_cuda():
305 306 307 308 309
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
            core.BKCLParallelContext(strategy, place))
310 311 312
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
            core.HCCLParallelContext(strategy, place))
313 314 315
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
            core.CNCLParallelContext(strategy, place))
316

K
kuizhiqing 已提交
317 318 319 320 321
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
322

323
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
324

325 326 327 328
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
329
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
330
        # compare to init_gloo, we don't need to
331 332 333
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
334

335 336
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
351
    return group
352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
374
    return _get_global_parallel_env().rank
375 376 377 378


def get_world_size():
    """
379
    Returns the number of trainers (number of processes participating in current job).
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
397
    return _get_global_parallel_env().world_size