parallel.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22 23 24 25 26 27 28

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
X
xiongkun 已提交
29
from paddle.distributed.fleet.launch_utils import check_backend
30
from paddle.fluid.dygraph.parallel import ParallelEnv
31
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready  # noqa: F401
32

33
__all__ = []
34 35 36

ParallelStrategy = core.ParallelStrategy

37 38 39 40 41 42 43 44 45 46 47
# NOTE(chenweihang): Maintain a global parallel env to avoid 
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

48

49
def _start_kv_server(port, http_server_d, size):
50
    from paddle.distributed.fleet.utils.http_server import KVServer
51
    http_server = KVServer(int(port), size=size)
52
    http_server.start()
53
    wait_seconds = 3
L
lilong12 已提交
54
    while http_server_d.get("running", False) or not http_server.should_stop():
55 56 57 58
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
59 60
def _is_cpuonly(backend):
    check_backend(backend)
61
    if backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl'] and (
62
            core.is_compiled_with_cuda() or core.is_compiled_with_xpu() or
63
            core.is_compiled_with_npu() or core.is_compiled_with_mlu()):
64

65 66 67 68 69 70
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
71 72 73 74 75 76 77 78
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
        raise ValueError("paddle.distributed initialize error, "
                         "environment variable %s is needed, but not set." %
                         var_name)


X
xiongkun 已提交
79
def init_parallel_env():
80
    """
81
    Initialize parallel training environment in dynamic graph mode.
82

83
    .. note::
84
        Now initialize both `NCCL` and `GLOO` contexts for communication.
85

86 87 88 89 90
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

91 92 93 94 95
    Returns:
        None
        
    Examples:
        .. code-block:: python
96
            # required: gpu
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
112
                # 1. initialize parallel environment
113 114
                dist.init_parallel_env()

115
                # 2. create data parallel layer & optimizer
116 117 118 119 120 121 122
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

123
                # 3. run layer
124 125 126 127 128 129 130 131 132 133 134 135 136 137
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

138 139 140 141 142 143 144 145 146 147 148
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
149 150
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to 
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
151 152
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
153 154
    # 1. gpu xpu check, must be gpu or xpu, 
    if not (is_cpu_only or core.is_compiled_with_cuda() or
155 156
            core.is_compiled_with_xpu() or core.is_compiled_with_npu() or
            core.is_compiled_with_mlu()):
157
        raise NotImplementedError(
158
            "If you want to use CPU-only version, please use 'gloo' as backend")
159

160
    if not is_cpu_only and core.is_compiled_with_cuda():
161
        _check_var_exists("FLAGS_selected_gpus")
162
    elif not is_cpu_only and core.is_compiled_with_xpu():
163
        _check_var_exists('FLAGS_selected_xpus')
K
kuizhiqing 已提交
164 165
    elif not is_cpu_only and core.is_compiled_with_npu():
        _check_var_exists('FLAGS_selected_npus')
166 167
    elif not is_cpu_only and core.is_compiled_with_mlu():
        _check_var_exists('FLAGS_selected_mlus')
168

169 170 171 172 173
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

K
kuizhiqing 已提交
174
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
175
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
176
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
177
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
178 179 180 181 182 183 184 185
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
186 187
            if backend == "heter":
                size = {'_worker': len(node_num)}
L
lilong12 已提交
188 189 190 191 192 193
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size))
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
194 195

    # 4. init NCCL ParallelStrategy
196
    strategy = ParallelStrategy()
197 198
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
199 200 201 202
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
203
    strategy.nrings = parallel_env.nrings
204

205
    # NOTE(chenweihang): [ why config global place here? ]
206
    # the dygraph mode will be set to default mode,
207 208 209 210
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
211 212 213
    if is_cpu_only:
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
214 215 216
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
217 218
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
219 220
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)
221

222
    _set_expected_place(place)
K
kuizhiqing 已提交
223
    # init nccl or hccl or bkcl or heter context
224 225 226
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
            core.GLOOParallelContext(strategy, place))
K
kuizhiqing 已提交
227 228 229
    elif (backend == "heter"):
        parallel_helper._set_parallel_ctx(
            core.HeterParallelContext(strategy, parallel_env.device_id))
230
    elif core.is_compiled_with_cuda():
231 232 233 234 235
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
            core.BKCLParallelContext(strategy, place))
236 237 238
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
            core.HCCLParallelContext(strategy, place))
239 240 241
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
            core.CNCLParallelContext(strategy, place))
242

K
kuizhiqing 已提交
243 244 245 246 247
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
248

249
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
250

251 252 253 254
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
255
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
256 257 258 259
        # compare to init_gloo, we don't need to 
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
260

261 262
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
299
    return _get_global_parallel_env().rank
300 301 302 303


def get_world_size():
    """
304
    Returns the number of trainers (number of processes participating in current job).
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
322
    return _get_global_parallel_env().world_size