test_elementwise_pow_op.py 7.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest, skip_check_grad_ci
19
import paddle.fluid as fluid
20
import paddle
Q
Qiao Longfei 已提交
21 22 23 24 25


class TestElementwisePowOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
26
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
27
        self.inputs = {
28 29
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64")
Q
Qiao Longfei 已提交
30 31 32 33
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
34 35 36 37
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
Q
Qiao Longfei 已提交
38

39
    def test_check_grad_normal(self):
40 41 42 43
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
44

Q
Qiao Longfei 已提交
45

46 47 48
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
49
        self.python_api = paddle.pow
50
        self.inputs = {
51
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
Z
zhupengyang 已提交
52
            'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64")
53 54 55 56 57 58 59
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
60
        self.python_api = paddle.pow
61
        self.inputs = {
62 63
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
            'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64")
64 65 66 67
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


68 69
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
Q
Qiao Longfei 已提交
70 71 72
class TestElementwisePowOp_scalar(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
73
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
74
        self.inputs = {
75 76
            'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
77 78 79 80 81 82 83
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_tensor(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
84
        self.python_api = paddle.pow
85
        self.inputs = {
86 87
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(1, 3, [100]).astype("float64")
88 89 90 91 92 93 94
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
95
        self.python_api = paddle.pow
96
        self.inputs = {
97 98
            'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
Q
Qiao Longfei 已提交
99 100 101 102
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


103 104 105
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
106
        self.python_api = paddle.pow
107
        self.inputs = {
108 109
            'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
110 111 112
        }
        self.attrs = {'axis': 1}
        self.outputs = {
113
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
114 115 116 117 118 119
        }


class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
120
        self.python_api = paddle.pow
121
        self.inputs = {
122 123
            'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
124 125 126
        }
        self.attrs = {'axis': 0}
        self.outputs = {
127 128
            'Out':
            np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
129 130 131 132 133 134
        }


class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
135
        self.python_api = paddle.pow
136
        self.inputs = {
137 138
            'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64")
139 140 141
        }
        self.attrs = {'axis': 1}
        self.outputs = {
142
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(1, 20, 5,
143 144 145 146
                                                                       1))
        }


147 148 149
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
150
        self.python_api = paddle.pow
151
        self.inputs = {
152 153
            'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64")
154 155 156 157
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


158 159 160
class TestElementwisePowOpInt(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
161
        self.python_api = paddle.pow
162 163 164 165
        self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
166 167 168 169
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204


class TestElementwisePowGradOpInt(unittest.TestCase):
    def setUp(self):
        self.x = np.asarray([1, 3, 6])
        self.y = np.asarray([1, 1, 1])
        self.res = self.x**self.y
        # dout = 1
        self.grad_res = np.asarray([1, 1, 1])
        # dx = dout * y * pow(x, y-1)
        self.grad_x = self.grad_res * self.y * (self.x
                                                **(self.y - 1)).astype("int")
        # dy = dout * log(x) * pow(x, y)
        self.grad_y = (self.grad_res * np.log(self.x) *
                       (self.x**self.y)).astype("int")
        print(self.grad_res, self.grad_x, self.grad_y)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.dygraph.guard(place):
                x = fluid.dygraph.to_variable(self.x, zero_copy=False)
                y = fluid.dygraph.to_variable(self.y, zero_copy=False)
                print(x, y)
                x.stop_gradient = False
                y.stop_gradient = False
                res = x**y
                res.backward()
                self.assertTrue(np.array_equal(res.gradient(), self.grad_res))
                self.assertTrue(np.array_equal(x.gradient(), self.grad_x))
                self.assertTrue(np.array_equal(y.gradient(), self.grad_y))


Q
Qiao Longfei 已提交
205 206
if __name__ == '__main__':
    unittest.main()