tracer.cc 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

M
minqiyang 已提交
17
#include <memory>
M
minqiyang 已提交
18
#include <set>
M
minqiyang 已提交
19 20
#include <unordered_map>
#include <unordered_set>
M
minqiyang 已提交
21

M
minqiyang 已提交
22
#include "paddle/fluid/framework/var_type_inference.h"
M
minqiyang 已提交
23 24 25 26
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"

27 28 29 30 31 32 33 34 35
#ifdef WITH_GPERFTOOLS
#include "gperftools/profiler.h"
#endif

DEFINE_string(
    tracer_profile_fname, "",
    "Profiler filename for imperative tracer, which generated by gperftools."
    "Only valid when compiled `WITH_PROFILER=ON`. Empty if disable.");

36
namespace paddle {
M
minqiyang 已提交
37 38
namespace imperative {

39 40 41 42 43
static std::once_flag gTracerProfileOnce;
#ifdef WITH_GPERFTOOLS
static bool gTracerProfilerStarted = false;
#endif

M
minqiyang 已提交
44 45 46
void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
X
Xin Pan 已提交
47
                  std::vector<framework::OpDesc*>* grad_op_descs,
M
minqiyang 已提交
48
                  std::unordered_map<std::string, std::string>* grad_to_var) {
X
Xin Pan 已提交
49 50
  PADDLE_ENFORCE(grad_op_descs->empty());
  std::vector<std::unique_ptr<framework::OpDesc>> descs =
M
minqiyang 已提交
51 52 53
      framework::OpInfoMap::Instance()
          .Get(op_desc.Type())
          .GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
J
JiabinYang 已提交
54

X
Xin Pan 已提交
55 56 57
  for (auto& desc : descs) {
    grad_op_descs->emplace_back(desc.release());
  }
M
minqiyang 已提交
58 59
}

60 61
void InitGrad(VarBase* var, platform::DeviceContext* dev_ctx) {
  PADDLE_ENFORCE_NOT_NULL(var, "Could not get valid var base");
M
minqiyang 已提交
62 63
  PADDLE_ENFORCE_NOT_NULL(dev_ctx,
                          "Could not get valid device from forward op");
64 65 66 67 68 69 70 71 72

  if (var->grads_ == nullptr) {
    auto& var_t = var->var_->Get<framework::LoDTensor>();
    var->grads_ = new VarBase(var->GradName(), framework::proto::VarType::FP32,
                              framework::vectorize(var_t.dims()),
                              dev_ctx->GetPlace(), true, false);
    auto grad_t = var->grads_->var_->GetMutable<framework::LoDTensor>();
    operators::math::set_constant(*dev_ctx, grad_t, 0.0);
  }
M
minqiyang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
}

platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
  platform::Place result = place;
  for (auto it : inputs) {
    for (VarBase* var : it.second) {
      platform::Place tmp_place =
          var->var_->Get<framework::LoDTensor>().place();
      if (!platform::is_same_place(tmp_place, result)) {
        PADDLE_THROW(
            "Input variable should keep in the same place: %s, but get place: "
            "%s of input %s instead",
            result, tmp_place, it.first);
      }
    }
  }

  return result;
M
minqiyang 已提交
91 92
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
framework::VariableNameMap CreateInputVarNameMap(
    const OpBase* op, const VarBasePtrMap& varbase_map) {
  framework::VariableNameMap result;

  auto& info_map = framework::OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(op->Type());
  if (op_info == nullptr || op_info->proto_ == nullptr) {
    return result;
  }

  for (auto& in : op_info->Proto().inputs()) {
    auto it = varbase_map.find(in.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE(in.dispensable());
      result[in.name()] = {};
    } else {
      auto var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (VarBase* var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[in.name()] = args;
    }
  }
  return result;
}

framework::VariableNameMap CreateOutputVarNameMap(
    const OpBase* op, const VarBasePtrMap& varbase_map) {
  framework::VariableNameMap result;

  auto& info_map = framework::OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(op->Type());
  if (op_info == nullptr || op_info->proto_ == nullptr) {
    return result;
  }

  for (auto& out : op_info->Proto().outputs()) {
    auto it = varbase_map.find(out.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE(out.dispensable());
      result[out.name()] = {};
    } else {
      auto var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (VarBase* var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[out.name()] = args;
    }
  }
  return result;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162
Tracer::Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {
  if (!FLAGS_tracer_profile_fname.empty()) {
    std::call_once(gTracerProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
      ProfilerStart(FLAGS_tracer_profile_fname.c_str());
      gTracerProfilerStarted = true;
#else
      LOG(WARNING) << "Paddle is not compiled with gperftools. "
                      "FLAGS_tracer_profile_fname will be ignored";
#endif
    });
  }
}

M
minqiyang 已提交
163
std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
M
minqiyang 已提交
164
                                    VarBasePtrMap& outputs,
165
                                    framework::AttributeMap attrs_map,
M
minqiyang 已提交
166 167
                                    const platform::Place expected_place,
                                    const bool stop_gradient) {
168 169 170 171 172 173
#ifdef WITH_GPERFTOOLS
  if (gTracerProfilerStarted) {
    ProfilerFlush();
  }
#endif

M
minqiyang 已提交
174 175 176
  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

177 178
  // Construct input_vars_map and output_vars_map
  std::map<std::string, VarBase*> current_vars_map;
M
minqiyang 已提交
179 180 181
  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
M
minqiyang 已提交
182
    invars.reserve(it.second.size());
M
minqiyang 已提交
183
    for (VarBase* inp : it.second) {
184 185
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr", op->Type(),
                              inp->Name());
M
minqiyang 已提交
186

M
minqiyang 已提交
187
      invars.emplace_back(inp->var_);
188 189 190
      op->TrackPreOp(inp, it.first);
      if (!stop_gradient) {
        current_vars_map[inp->Name()] = inp;
M
minqiyang 已提交
191
      }
192 193 194
      VLOG(3) << "input var name: " << inp->Name()
              << " inited: " << inp->var_->IsInitialized()
              << " stop_grad: " << inp->IsStopGradient();
M
minqiyang 已提交
195 196 197 198 199 200 201
    }
  }

  op->output_vars_ = outputs;
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
M
minqiyang 已提交
202
    outvars.reserve(outputs.size());
203
    for (size_t i = 0U; i < outputs.size(); ++i) {
M
minqiyang 已提交
204
      VarBase* out = outputs[i];
M
minqiyang 已提交
205
      outvars.emplace_back(out->var_);
X
Xin Pan 已提交
206
      out->TrackPreOp(op, it.first, i, stop_gradient);
207 208 209
      if (!stop_gradient) {
        current_vars_map[out->Name()] = out;
      }
M
minqiyang 已提交
210

211 212 213
      VLOG(3) << "input var name: " << out->Name()
              << " inited: " << out->var_->IsInitialized()
              << " stop_grad: " << out->IsStopGradient();
M
minqiyang 已提交
214 215 216
    }
  }

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  // Check attrs and create op
  framework::VariableNameMap invars_name_map =
      CreateInputVarNameMap(op, inputs);
  framework::VariableNameMap outvars_name_map =
      CreateOutputVarNameMap(op, outputs);

  auto& info = framework::OpInfoMap::Instance().Get(op->Type());
  if (info.Checker() != nullptr) {
    info.Checker()->Check(&attrs_map);
  }

  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(op->Type(), invars_name_map,
                                      outvars_name_map, attrs_map);

M
minqiyang 已提交
232
  if (info.infer_var_type_) {
M
minqiyang 已提交
233
    RuntimeInferVarTypeContext infer_var_type_ctx(&inputs, &outputs,
M
minqiyang 已提交
234
                                                  &attrs_map);
M
minqiyang 已提交
235
    info.infer_var_type_(&infer_var_type_ctx);
M
minqiyang 已提交
236 237
  }

238 239 240
  // TODO(minqiyang): Support infer var type in imperative mode
  // Run forward op
  VLOG(3) << "tracer running " << op->Type();
M
minqiyang 已提交
241 242 243 244 245 246 247 248
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
P
Paddle CI 已提交
249 250 251
  op->place_ = GetExpectedPlace(expected_place, inputs);
  PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
  prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
X
polish  
Xin Pan 已提交
252 253 254
  prepared_op.func(
      framework::ExecutionContext(prepared_op.op, scope, *prepared_op.dev_ctx,
                                  prepared_op.ctx, prepared_op.kernel_configs));
M
minqiyang 已提交
255

256
  // construct backward op
M
minqiyang 已提交
257
  std::set<std::string> vars_saved_for_backward;
M
minqiyang 已提交
258
  if (!stop_gradient) {
259 260 261
    VLOG(5) << "start construct backward op";

    // construct grad op descs
M
minqiyang 已提交
262
    op->attrs_ = attrs_map;
263 264
    std::unique_ptr<framework::OpDesc> fwd_op_desc(new framework::OpDesc(
        op->Type(), invars_name_map, outvars_name_map, attrs_map));
265 266
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
267 268 269
    // NOTE(minqiyang): We don't support control flow op in imperative now
    // Add grad_block_ when we want to support it
    CreateGradOp(*fwd_op_desc, {}, {}, &op->grad_op_descs_, grad_to_var.get());
X
Xin Pan 已提交
270

271
    VLOG(5) << "create grad op desc: " << op->grad_op_descs_[0]->Type();
M
minqiyang 已提交
272

273 274 275 276 277 278
    const size_t grad_op_count = op->grad_op_descs_.size();

    op->grad_input_vars_.resize(grad_op_count);
    op->grad_output_vars_.resize(grad_op_count);

    for (size_t i = 0; i < grad_op_count; ++i) {
X
Xin Pan 已提交
279 280 281
      framework::OpDesc* grad_op_desc = op->grad_op_descs_[i];
      for (auto it : grad_op_desc->Inputs()) {
        auto& grad_in_vars = op->grad_input_vars_[i][it.first];
282
        grad_in_vars.reserve(it.second.size());
X
Xin Pan 已提交
283 284 285
        for (const std::string& grad_invar : it.second) {
          auto var_it = grad_to_var->find(grad_invar);
          if (var_it == grad_to_var->end()) {
286 287
            auto fwd_var_it = current_vars_map.find(grad_invar);
            PADDLE_ENFORCE(fwd_var_it != current_vars_map.end());
X
Xin Pan 已提交
288
            // Forward inputs or outputs.
M
minqiyang 已提交
289
            grad_in_vars.emplace_back(fwd_var_it->second);
X
Xin Pan 已提交
290
          } else {
291 292
            VarBase* var = current_vars_map[var_it->second];
            InitGrad(var, prepared_op.GetDeviceContext());
X
Xin Pan 已提交
293
            // Douts.
M
minqiyang 已提交
294
            grad_in_vars.emplace_back(var->grads_);
X
Xin Pan 已提交
295
          }
M
minqiyang 已提交
296 297

          vars_saved_for_backward.insert(it.first);
X
Xin Pan 已提交
298 299 300 301 302 303 304 305 306 307
        }
      }

      for (auto it : grad_op_desc->Outputs()) {
        auto& grad_out_vars = op->grad_output_vars_[i][it.first];
        for (const std::string& grad_outvar : it.second) {
          auto var_it = grad_to_var->find(grad_outvar);
          PADDLE_ENFORCE(var_it != grad_to_var->end(),
                         "Could not found the grad op output var, should this "
                         "operator %s's stop gradient be True",
308 309 310
                         op->Type());
          VarBase* var = current_vars_map[var_it->second];
          InitGrad(var, prepared_op.GetDeviceContext());
M
minqiyang 已提交
311
          grad_out_vars.push_back(var->grads_);
M
minqiyang 已提交
312 313 314 315 316
        }
      }
    }
  }

M
minqiyang 已提交
317
  return vars_saved_for_backward;
M
minqiyang 已提交
318 319
}

320 321 322
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
323 324
  VLOG(3) << "py_trace " << op->Type();

X
Xin Pan 已提交
325
  op->input_vars_[PyLayer::kFwdInp] = inputs;
326 327 328 329

  std::vector<framework::Variable*> ret_vars =
      PyLayer::Apply(op->forward_id_, inputs);

330
  for (VarBase* inp : inputs) {
331
    op->TrackPreOp(inp, PyLayer::kFwdInp);
332 333
  }

334 335 336 337 338 339 340
  std::vector<VarBase*>& outputs = op->output_vars_[PyLayer::kFwdOut];
  outputs.reserve(ret_vars.size());
  for (size_t i = 0U; i != ret_vars.size(); ++i) {
    framework::Variable* v = ret_vars[i];
    VarBase* out = new VarBase(string::Sprintf("%s_out_%d", op->Type(), i), v,
                               nullptr, stop_gradient);
    outputs.emplace_back(out);
X
Xin Pan 已提交
341
    out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
342
  }
343

344
  if (!stop_gradient) {
345
    VLOG(5) << "start construct backward op";
X
Xin Pan 已提交
346 347
    op->grad_input_vars_.resize(1);
    op->grad_output_vars_.resize(1);
X
Xin Pan 已提交
348
    auto& grad_input_vars =
X
Xin Pan 已提交
349
        op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)];
X
Xin Pan 已提交
350
    auto& grad_output_vars =
X
Xin Pan 已提交
351
        op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)];
352

M
minqiyang 已提交
353 354
    for (VarBase* inp : inputs) {
      grad_input_vars.push_back(inp);
355 356
    }
    for (VarBase* out : outputs) {
M
minqiyang 已提交
357
      grad_input_vars.push_back(out);
358
    }
M
minqiyang 已提交
359

360
    // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
M
minqiyang 已提交
361
    platform::CPUPlace place;
362
    for (VarBase* out : outputs) {
363
      InitGrad(out, platform::DeviceContextPool::Instance().Get(place));
M
minqiyang 已提交
364
      grad_input_vars.push_back(out->grads_);
365
    }
M
minqiyang 已提交
366

367 368
    for (VarBase* inp : inputs) {
      InitGrad(inp, platform::DeviceContextPool::Instance().Get(place));
M
minqiyang 已提交
369
      grad_output_vars.push_back(inp->grads_);
370 371 372 373 374
    }
  }
  return outputs;
}

M
minqiyang 已提交
375
}  // namespace imperative
376
}  // namespace paddle