activation_op.h 101.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
12 13

#pragma once
D
dzhwinter 已提交
14
#include <glog/logging.h>
Y
Yihua Xu 已提交
15
#include <algorithm>
16
#include <memory>
D
dzhwinter 已提交
17 18
#include <string>
#include <unordered_set>
19 20
#include <utility>
#include <vector>
21

C
Clementine 已提交
22 23 24 25 26
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

27
#include <type_traits>
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
30
#include "paddle/fluid/framework/tensor_util.h"
Y
Yihua Xu 已提交
31
#include "paddle/fluid/operators/math/blas.h"
32
#include "paddle/fluid/platform/enforce.h"
33
#include "paddle/fluid/platform/float16.h"
34 35 36 37
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
38 39 40
namespace paddle {
namespace operators {

41 42
using framework::To32BitIndex;

43 44 45 46 47 48
enum ActBwdOpFwdDeps {
  kNoDeps = 0x00,  // Do not need any forward input/output
  kDepX = 0x01,    // Only need forward input X
  kDepOut = 0x02,  // Only need forward output Out
};

C
chengduo 已提交
49 50 51 52 53 54
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

55 56 57 58 59
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
60 61 62 63 64 65 66 67
  PADDLE_ENFORCE_NOT_NULL(x_var,
                          platform::errors::NotFound(
                              "Cannot get input Variable X, variable name = %s",
                              context.InputName("X")));
  PADDLE_ENFORCE_NOT_NULL(
      out_var, platform::errors::NotFound(
                   "Cannot get output Variable Out, variable name = %s",
                   context.OutputName("Out")));
H
hong 已提交
68
  if (CanBeUsedBySelectedRows.count(context.Type())) {
69 70 71 72 73 74 75 76
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

77 78 79 80
  PADDLE_ENFORCE_NOT_NULL(*Out, platform::errors::NotFound(
                                    "Cannot get the tensor from the Variable "
                                    "Output(Out), variable name = %s",
                                    context.OutputName("Out")));
81 82
}

83
template <ActBwdOpFwdDeps kDepValue>
84 85 86 87 88 89
inline void ExtractActivationGradTensor(
    const framework::ExecutionContext& context, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** dOut,
    framework::Tensor** dX) {
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
90 91 92 93
  const framework::Variable* out_var = nullptr;

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    out_var = context.InputVar("Out");
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     context.InputName("Out")));
  }

  PADDLE_ENFORCE_NOT_NULL(
      out_grad_var, platform::errors::NotFound(
                        "Cannot get input Variable %s, variable name = %s",
                        framework::GradVarName("Out"),
                        context.InputName(framework::GradVarName("Out"))));
  PADDLE_ENFORCE_NOT_NULL(
      x_grad_var, platform::errors::NotFound(
                      "Cannot get output Variable %s, variable name = %s",
                      framework::GradVarName("X"),
                      context.OutputName(framework::GradVarName("X"))));
110

H
hong 已提交
111
  if (CanBeUsedBySelectedRows.count(context.Type())) {
112 113 114 115
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
116 117 118 119 120 121 122 123

    if (out_var) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    } else {
      *Out = *dOut;  // fake out
    }

124 125 126 127
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
128 129 130 131 132 133

    if (out_var) {
      *Out = &(out_var->Get<framework::LoDTensor>());
    } else {
      *Out = *dOut;  // fake out
    }
134
  }
135

136 137 138 139 140
  PADDLE_ENFORCE_NOT_NULL(*dX,
                          platform::errors::NotFound(
                              "Cannot get the tensor from the Variable "
                              "Output(Out), variable name = %s",
                              context.OutputName(framework::GradVarName("X"))));
141

142
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
C
chengduo 已提交
143
    auto x_var = context.InputVar("X");
144 145 146 147
    PADDLE_ENFORCE_NOT_NULL(x_var, platform::errors::NotFound(
                                       "Cannot get the tensor from the "
                                       "Variable Input(X), variable name = %s",
                                       context.InputName("X")));
H
hong 已提交
148
    if (CanBeUsedBySelectedRows.count(context.Type())) {
149
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
150
    } else {
151
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
152
    }
153
  } else {
H
hong 已提交
154
    VLOG(10) << " Inplace activation of Op : " << context.Type();
155 156 157
    *X = *dX;
  }
}
C
chengduo 已提交
158

159 160 161 162 163
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
164

165 166 167 168
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
169
    Out->mutable_data<T>(context.GetPlace());
170

171 172 173 174
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Activation"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Activation"));
Q
QI JUN 已提交
175 176
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
177
    Functor functor;
178 179 180 181 182

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
183 184 185 186 187 188 189 190
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out));
    } else {
      functor(*place, x, out);
    }
Q
qijun 已提交
191 192 193
  }
};

Q
QI JUN 已提交
194
template <typename DeviceContext, typename Functor>
195 196
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
197
 public:
198
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
199
  void Compute(const framework::ExecutionContext& context) const override {
200 201 202
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
203 204
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
Q
qijun 已提交
205
    dX->mutable_data<T>(context.GetPlace());
206 207 208 209 210 211 212 213
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "ActivationGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "ActivationGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Input", "X@GRAD", "ActivationGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ActivationGrad"));
Q
QI JUN 已提交
214 215
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
216
    Functor functor;
217 218 219 220
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
221 222 223 224 225 226 227 228 229
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out), To32BitIndex(dout),
              To32BitIndex(dx));
    } else {
      functor(*place, x, out, dout, dx);
    }
Q
qijun 已提交
230 231 232
  }
};

233 234 235 236 237 238 239 240 241
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

242
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
243
template <typename T>
244
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
245 246 247
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
248 249 250
  }
};

251
template <typename T>
252
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
253 254 255 256
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
257
  }
258 259

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
260 261
};

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/*
    Out
    DOut -> SigmoidGradGrad -> DOutNew
    DDX                        DDOut

    DDOut = (1-Out)*Out*DDX
    DOutNew = (1-2*Out)*DOut*DDX
*/
template <typename T>
struct SigmoidGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  framework::Tensor* dOutNew, framework::Tensor* ddOut) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SigmoidGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "SigmoidGradGrad"));

    if (dOutNew) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Input", "DOut", "SigmoidGradGrad"));
      auto dout_new = framework::EigenVector<T>::Flatten(
286
          GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "SigmoidGradGrad"));
287 288 289 290 291
      dout_new.device(*d) =
          (static_cast<T>(1) - static_cast<T>(2) * out) * dout * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
292
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SigmoidGradGrad"));
293 294 295 296 297 298
      ddout.device(*d) = (static_cast<T>(1) - out) * out * ddx;
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
    Out
    DOut                            D_Dout
    DDx     -> SigmoidTripleGrad -> D_DDx
    D_DDout                         d_OutNew
    D_Dout_new

    D_Dout = (1-2*Out)*DDx*D_Dout_new
    D_DDx = (1-Out)*Out*D_DDout + (1-2*Out)*DOut*D_Dout_new
    D_OutNew = (DDx-2*Out*DDx)*D_DDout - 2*DOut*DDx*D_Dout_new

    Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    D_OutNew, D_DOut, D_DDx               // output
*/
template <typename T>
struct SigmoidTripleGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  const framework::Tensor* d_DDOut,
                  const framework::Tensor* d_dOut_New,
                  framework::Tensor* d_d_Out, framework::Tensor* d_Out_New,
                  framework::Tensor* d_DDx) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SigmoidTripleGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "SigmoidTripleGrad"));
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "DOut", "SigmoidTripleGrad"));
    auto d_ddOut = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(d_DDOut, "Input", "D_DDOut", "SigmoidTripleGrad"));
    auto d_dOutNew = framework::EigenVector<T>::Flatten(GET_DATA_SAFELY(
        d_dOut_New, "Input", "D_DOut_New", "SigmoidTripleGrad"));

    if (d_Out_New) {
      auto d_OutNew = framework::EigenVector<T>::Flatten(GET_DATA_SAFELY(
          d_Out_New, "Output", "D_OutNew", "SigmoidTripleGrad"));
      d_OutNew.device(*d) = (ddx - static_cast<T>(2) * out * ddx) * d_ddOut -
                            static_cast<T>(2) * dout * ddx * d_dOutNew;
    }
    if (d_d_Out) {
      auto d_dOut = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_d_Out, "Output", "D_DOut", "SigmoidTripleGrad"));
      d_dOut.device(*d) =
          (static_cast<T>(1) - static_cast<T>(2) * out) * ddx * d_dOutNew;
    }
    if (d_DDx) {
      auto d_ddx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_DDx, "Output", "D_DDx", "SigmoidTripleGrad"));
      d_ddx.device(*d) =
          (static_cast<T>(1) - out) * out * d_ddOut +
          (static_cast<T>(1) - static_cast<T>(2) * out) * dout * d_dOutNew;
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

M
minghaoBD 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
// silu(x) = x / (1 + exp(-x))
template <typename T>
struct SiluFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    auto temp = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
    out.device(d) = x * temp;
  }
};

// silu'(x) = (1 / (1 + e^{-x}))  * (1 + out * e^{-x}))
template <typename T>
struct SiluGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto temp1 = static_cast<T>(1) + (-x).exp();  // 1+e^(-x)
    auto temp2 = x * (-x).exp();                  // x*e^(-x)
    dx.device(d) = dout * ((static_cast<T>(1) / temp1) *
                           (static_cast<T>(1) + (temp2 / temp1)));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

382 383 384 385
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
386
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
387 388 389 390 391 392 393 394 395 396
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
397 398
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
399
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
400
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
401 402 403 404 405 406 407 408
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
409 410 411
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
412 413
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
414
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
415
  }
416 417

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
418 419
};

Q
qijun 已提交
420
// exp(x) = e^x
421 422
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
423 424 425
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
426 427 428
  }
};

429 430
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
431 432 433 434
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
435
  }
436 437

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
438 439
};

R
ronnywang 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
// expm1(x) = e^x - 1
template <typename T>
struct Expm1Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.expm1();
  }
};

template <typename T>
struct Expm1GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out + dout;
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

Q
qijun 已提交
460
// relu(x) = max(x, 0)
Q
qijun 已提交
461
template <typename T>
462 463 464 465 466 467 468 469 470 471 472
struct ReluCPUFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr([] HOSTDEVICE(T v) {
      return v > static_cast<T>(0) ? v : static_cast<T>(0);
    });
  }
};

template <typename T>
struct ReluCUDAFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
473 474 475
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
476 477
  }
};
Q
qijun 已提交
478

Q
qijun 已提交
479
template <typename T>
480
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
481 482 483
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
484
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
485
  }
486 487

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
488
};
Q
qijun 已提交
489

490
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
491 492
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
493 494 495
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
496 497 498 499
  }
};

template <typename T>
500
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
501 502 503 504
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
505
  }
506 507

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
508 509
};

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
template <typename T>
struct TanhGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  framework::Tensor* dOutNew, framework::Tensor* ddOut) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "TanhGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "TanhGradGrad"));
    // tanh grad grad : ddout = (1 - out^2) * ddx, dout = - (dout_old * 2 * out
    // * ddx)
    if (dOutNew) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Input", "DOut", "TanhGradGrad"));
      auto dout_new = framework::EigenVector<T>::Flatten(
527
          GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "TanhGradGrad"));
528 529 530 531 532
      dout_new.device(*d) =
          static_cast<T>(-1) * dout * static_cast<T>(2) * out * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
533
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "TanhGradGrad"));
534 535 536 537 538
      ddout.device(*d) = (static_cast<T>(1) - out * out) * ddx;
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
    Out
    DOut                            D_Dout
    DDx     -> TanhTripleGrad ->    D_DDx
    D_DDout                         d_OutNew
    D_Dout_new

    D_Dout = (-2) * Out * DDx * D_Dout_new
    D_DDx = (1-Out^2)*D_DDout + (-2) * Out * DOut * D_Dout_new
    D_OutNew = (-2) * Out * DDx * D_DDout + (-2) * DOut * DDx * D_Dout_new

    Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    D_OutNew, D_DOut, D_DDx               // output
*/
template <typename T>
struct TanhTripleGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  const framework::Tensor* d_DDOut,
                  const framework::Tensor* d_dOut_New,
                  framework::Tensor* d_d_Out, framework::Tensor* d_Out_New,
                  framework::Tensor* d_DDx) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "TanhTripleGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "TanhTripleGrad"));
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "DOut", "TanhTripleGrad"));
    auto d_ddOut = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(d_DDOut, "Input", "D_DDOut", "TanhTripleGrad"));
    auto d_dOutNew = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(d_dOut_New, "Input", "D_DOut_New", "TanhTripleGrad"));

    if (d_Out_New) {
      auto d_OutNew = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_Out_New, "Output", "D_OutNew", "TanhTripleGrad"));
      d_OutNew.device(*d) = (static_cast<T>(-2) * out * ddx * d_ddOut) -
                            (static_cast<T>(2) * dout * ddx * d_dOutNew);
    }
    if (d_d_Out) {
      auto d_dOut = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_d_Out, "Output", "D_DOut", "TanhTripleGrad"));
      d_dOut.device(*d) = static_cast<T>(-2) * out * ddx * d_dOutNew;
    }
    if (d_DDx) {
      auto d_ddx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_DDx, "Output", "D_DDx", "TanhTripleGrad"));
      d_ddx.device(*d) = (static_cast<T>(1) - (out * out)) * d_ddOut -
                         static_cast<T>(2) * out * dout * d_dOutNew;
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};
594

K
Kavya Srinet 已提交
595 596 597 598
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
599 600 601
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
602 603 604 605 606
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
607 608 609 610
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
611
  }
612 613

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
Kavya Srinet 已提交
614 615
};

616 617 618 619 620 621 622 623 624
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
625 626
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
627 628
    auto temp1 = x < static_cast<T>(threshold * -1.f);
    auto temp2 = x > static_cast<T>(threshold);
629
    out.device(d) = x * (temp1 || temp2).template cast<T>();
630 631 632 633 634 635 636 637 638 639 640
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
641 642 643
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
644 645
    auto temp1 = x < static_cast<T>(threshold * -1.f);
    auto temp2 = x > static_cast<T>(threshold);
646
    dx.device(d) = dout * (temp1 || temp2).template cast<T>();
647
  }
648 649

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
650 651
};

K
Kexin Zhao 已提交
652
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
653 654 655 656 657 658 659 660
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
661 662
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
663
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
664 665
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
666
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
667 668 669 670 671 672 673 674 675
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
676 677 678
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
679
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
680 681
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
682
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
683
  }
684 685

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
686 687
};

Q
qijun 已提交
688
// sqrt(x) = x^(1/2)
689 690
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
691 692 693
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
694 695 696 697
  }
};

template <typename T>
698
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
699 700 701
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
702
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
703
  }
704 705

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
706 707
};

Z
zhoukunsheng 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721
// rsqrt(x) = x^(-1/2)
template <typename T>
struct RsqrtFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.rsqrt();
  }
};

template <typename T>
struct RsqrtGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
722
    dx.device(d) = static_cast<T>(-0.5) * dout * out * out * out;
Z
zhoukunsheng 已提交
723
  }
Z
zhoukunsheng 已提交
724 725

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Z
zhoukunsheng 已提交
726 727
};

D
dzhwinter 已提交
728 729 730
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
731 732 733
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
734 735 736 737 738
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
739 740 741
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
742
    dx.device(d) = static_cast<T>(0) * out;
D
dzhwinter 已提交
743
  }
744 745

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kNoDeps; }
D
dzhwinter 已提交
746 747 748 749 750
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
751 752
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
753
    out.device(d) = x.floor();
D
dzhwinter 已提交
754 755 756
  }
};

C
add cos  
chengduoZH 已提交
757 758 759 760 761
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

762 763 764 765 766 767 768
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
769 770 771 772 773
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

774 775 776 777 778 779 780
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
781 782 783 784 785 786 787 788
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
789 790

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
810 811

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
812 813 814 815 816 817 818 819 820 821 822
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

J
joejiong 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
template <typename T>
struct Tangent {
  HOSTDEVICE T operator()(const T& val) const { return tan(val); }
};

template <>
struct Tangent<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(tan(static_cast<float>(val)));
  }
};

// Tangent'(x) = -Tangent(x)
template <typename T>
struct TanGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout / x.unaryExpr(Cosine<T>()).square();
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

// Tangent(x) = tan(x)
template <typename T>
struct TanFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Tangent<T>());
  }
};

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
template <typename T>
struct Sinh {
  HOSTDEVICE T operator()(const T& val) const { return sinh(val); }
};

template <>
struct Sinh<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sinhf(static_cast<float>(val)));
  }
};

template <typename T>
struct Cosh {
  HOSTDEVICE T operator()(const T& val) const { return cosh(val); }
};

template <>
struct Cosh<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(coshf(static_cast<float>(val)));
  }
};

// sinh(x) = sinh(x)
template <typename T>
struct SinhFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sinh<T>());
  }
};

// cosh(x) = cosh(x)
template <typename T>
struct CoshFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosh<T>());
  }
};

// sinh'(x) = cosh(x)
template <typename T>
struct SinhGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosh<T>());
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

// cosh'(x) = sinh(x)
template <typename T>
struct CoshGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Sinh<T>());
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
template <typename T>
struct Acos {
  HOSTDEVICE T operator()(const T& val) const { return acos(val); }
};

template <>
struct Acos<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(acos(static_cast<float>(val)));
  }
};

// Acos(x) = acos(x)
template <typename T>
struct AcosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Acos<T>());
  }
};

// acos'(x) = -1/sqrt(1-x^2)
template <typename T>
struct AcosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        -dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
952 953

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
};

template <typename T>
struct Asin {
  HOSTDEVICE T operator()(const T& val) const { return asin(val); }
};

template <>
struct Asin<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(asin(static_cast<float>(val)));
  }
};

// Asin(x) = asin(x)
template <typename T>
struct AsinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Asin<T>());
  }
};

// asin'(x) = 1/sqrt(1-x^2)
template <typename T>
struct AsinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
986 987

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
};

template <typename T>
struct Atan {
  HOSTDEVICE T operator()(const T& val) const { return atan(val); }
};

template <>
struct Atan<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(atan(static_cast<float>(val)));
  }
};

// Atan(x) = atan(x)
template <typename T>
struct AtanFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Atan<T>());
  }
};

// atan'(x) =  1 / (1 + x^2)
template <typename T>
struct AtanGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (static_cast<T>(1) + x.square());
  }
1019 1020

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1021 1022
};

X
xiaoting 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
template <typename T>
struct Acosh {
  HOSTDEVICE T operator()(const T& val) const { return acosh(val); }
};

template <>
struct Acosh<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(acosh(static_cast<float>(val)));
  }
};

// Acosh(x) = acosh(x)
template <typename T>
struct AcoshFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Acosh<T>());
  }
};

// acosh'(x) =  1/sqrt(x^2 - 1)
template <typename T>
struct AcoshGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * static_cast<T>(1) / (x * x - static_cast<T>(1)).sqrt();
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

template <typename T>
struct Asinh {
  HOSTDEVICE T operator()(const T& val) const { return asinh(val); }
};

template <>
struct Asinh<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(asinh(static_cast<float>(val)));
  }
};

// Asinh(x) = asinh(x)
template <typename T>
struct AsinhFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Asinh<T>());
  }
};

// asinh'(x) =  1/sqrt(x^2 + 1)
template <typename T>
struct AsinhGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * static_cast<T>(1) / (x.square() + static_cast<T>(1)).sqrt();
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

template <typename T>
struct Atanh {
  HOSTDEVICE T operator()(const T& val) const { return atanh(val); }
};

template <>
struct Atanh<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(atanh(static_cast<float>(val)));
  }
};

// Atanh(x) = atanh(x)
template <typename T>
struct AtanhFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Atanh<T>());
  }
};

// atanh'(x) =  1/(1 - x^2)
template <typename T>
struct AtanhGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (static_cast<T>(1) - x.square());
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

D
dzhwinter 已提交
1124 1125 1126
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1127 1128 1129
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
1130 1131 1132
  }
};

Q
qijun 已提交
1133 1134
// reciprocal(x) = 1 / x
template <typename T>
1135
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1136 1137 1138
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
1139 1140 1141
  }
};

1142
template <typename T>
1143
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1144 1145 1146 1147
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
1148
  }
1149 1150

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
1151 1152 1153
};

// log(x) = natural logarithm of x
1154 1155
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1156 1157 1158
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
1159 1160 1161
  }
};

1162
template <typename T>
1163
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1164 1165 1166 1167
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
1168
  }
1169 1170

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
1171 1172
};

J
joejiong 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
// log2(x) = logarithm to the base 2 of the elements of x
template <typename T>
struct Log2Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log() / static_cast<T>(log(2));
  }
};

// the gradient of log2(x) is 1/(x*ln(2))
template <typename T>
struct Log2GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (x * static_cast<T>(log(2)));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

J
joejiong 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
// log10(x) = logarithm to the base 10 of the elements of x
template <typename T>
struct Log10Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log() / static_cast<T>(log(10));
  }
};

// the gradient of log10(x) is 1/(x*ln(10))
template <typename T>
struct Log10GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (x * static_cast<T>(log(10)));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
// log1p(x) = natural logarithm of x+1
template <typename T>
struct Log1pFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (static_cast<T>(1) + x).log();
  }
};

template <typename T>
struct Log1pGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / (x + static_cast<T>(1)));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

Q
qijun 已提交
1235
// square(x) = x^2
1236 1237
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1238 1239 1240
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
1241
  }
1242
};
Q
qijun 已提交
1243

1244
template <typename T>
1245
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1246 1247 1248 1249
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
1250
  }
1251 1252

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1253 1254
};

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
1265

F
fengjiayi 已提交
1266 1267 1268
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1269
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
1270 1271 1272
  }
};

1273 1274 1275 1276 1277 1278 1279
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
1280 1281 1282 1283
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
1284 1285
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
1286
  }
1287 1288

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1289 1290
};

1291 1292 1293 1294 1295 1296 1297 1298 1299
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1300 1301 1302
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1303
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
1304 1305 1306 1307 1308 1309 1310 1311 1312
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
1313 1314 1315
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
1316 1317 1318 1319
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
1320
  }
1321 1322

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1323 1324
};

H
huangjun12 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
// HardSwish = min(max(0, x+3), 6) * x / 6
template <typename T>
struct HardSwishFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (x + static_cast<T>(offset))
                        .cwiseMax(static_cast<T>(0))
                        .cwiseMin(static_cast<T>(threshold)) *
                    x / static_cast<T>(scale);
  }
};

template <typename T>
struct HardSwishGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto tmp = ((x + static_cast<T>(offset)) < static_cast<T>(threshold))
                   .template cast<T>();
    dx.device(d) =
        dout *
        (((x + static_cast<T>(offset)) > static_cast<T>(0)).template cast<T>() *
             (static_cast<T>(2) * x + static_cast<T>(offset)) /
             static_cast<T>(scale) * tmp +
         static_cast<T>(1) * (static_cast<T>(1) - tmp));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

1370 1371 1372 1373
// For numerical stability, using the following formula instead of softplus(x) =
// log(1 + exp(x))
// softplus(x) = log(1 + exp(beta * x)) / beta when beta * x <= threshold(beta =
// 1, threshold = 20 by default), otherwise x
K
kexinzhao 已提交
1374 1375
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
1376 1377 1378 1379 1380 1381
  float beta;
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

F
fengjiayi 已提交
1382 1383
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
1384 1385 1386 1387
    auto x_beta = static_cast<T>(beta) * x;
    out.device(d) = (x_beta > static_cast<T>(threshold))
                        .select(x, (static_cast<T>(1) + x_beta.exp()).log() /
                                       static_cast<T>(beta));
K
kexinzhao 已提交
1388 1389 1390
  }
};

1391 1392 1393 1394
// For numerical stability, using the following formula instead of
// d(softplus(x))/dx = 1 / (1 + exp(-x))
// d(softplus(x))/dx = 1 / (1 + exp(-beta * x)) when beta * x <= threshold(beta
// = 1, threshold = 20 by default), otherwise x
K
kexinzhao 已提交
1395 1396
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
1397 1398 1399 1400 1401 1402
  float beta;
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

F
fengjiayi 已提交
1403 1404 1405
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
1406
    auto x_beta = static_cast<T>(beta) * x;
F
fengjiayi 已提交
1407
    dx.device(d) =
1408 1409
        (x_beta > static_cast<T>(threshold))
            .select(dout, dout / (static_cast<T>(1) + (-x_beta).exp()));
K
kexinzhao 已提交
1410
  }
1411 1412

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
kexinzhao 已提交
1413 1414
};

1415 1416
// softsign(x) = x / (1 + |x|)
template <typename T>
1417
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1418 1419 1420
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
1421 1422 1423 1424 1425 1426
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
1427
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1428 1429 1430
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
1431
    dx.device(d) =
F
fengjiayi 已提交
1432
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
1433
  }
1434 1435

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1436 1437
};

1438 1439 1440 1441 1442 1443
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
1444

F
fengjiayi 已提交
1445 1446
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1447 1448
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
1449
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
1450 1451 1452
  }
};

1453 1454 1455 1456 1457 1458
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
1459 1460 1461
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1462
    auto tmp = static_cast<T>(threshold);
Z
Zeng Jinle 已提交
1463
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>();
F
fengjiayi 已提交
1464
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
1465
  }
1466 1467

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1468 1469
};

K
Kavya Srinet 已提交
1470 1471 1472 1473 1474 1475
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1476

F
fengjiayi 已提交
1477 1478
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1479 1480 1481 1482 1483
    if (alpha < 1.f) {
      out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
    } else {
      out.device(d) = x.cwiseMin(static_cast<T>(alpha) * x);
    }
1484 1485 1486
  }
};

K
Kavya Srinet 已提交
1487 1488 1489 1490 1491 1492
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1493 1494 1495
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
1496
    auto temp1 =
1497 1498
        static_cast<T>(alpha) * (x < static_cast<T>(0)).template cast<T>();
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>();
F
fengjiayi 已提交
1499
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
1500
  }
1501

1502
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1503 1504
};

1505 1506 1507 1508 1509 1510
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1511

F
fengjiayi 已提交
1512 1513
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1514 1515 1516
    out.device(d) =
        (x < static_cast<T>(0))
            .select(static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)), x);
1517 1518 1519
  }
};

1520 1521 1522 1523 1524 1525
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1526 1527 1528
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
zhupengyang 已提交
1529 1530 1531 1532 1533 1534
    // case 1: alpha >= 0
    // dx = dout, if out > 0
    // dx = dout * (out + alpha), if out <= 0
    dx.device(d) = (out > static_cast<T>(0))
                       .select(dout, dout * (out + static_cast<T>(alpha)));
  }
1535

Z
zhupengyang 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

template <typename T>
struct ELUGradNegativeAlphaFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    // case 2: alpha < 0
    // dx = dout, if x > 0
    // dx = dout * (out + alpha), if x <=0
    dx.device(d) = (x > static_cast<T>(0))
                       .select(dout, dout * static_cast<T>(alpha) * x.exp());
1553
  }
1554 1555

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1556 1557
};

Z
zhupengyang 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
template <typename DeviceContext, typename T>
class ELUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Out = context.Input<framework::Tensor>("Out");
    auto* dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    const float alpha = context.Attr<float>("alpha");
    dX->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "elu_grad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "elu_grad"));
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "dOut", "elu_grad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Output", "dX", "elu_grad"));
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();

    if (alpha > 0) {
      ELUGradFunctor<T> functor;
      functor.alpha = alpha;
      functor(*place, x, out, dout, dx);
    } else {
      ELUGradNegativeAlphaFunctor<T> functor;
      functor.alpha = alpha;
      functor(*place, x, out, dout, dx);
    }
  }
};

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
template <typename T>
struct CELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
        (x < static_cast<T>(0))
            .select(static_cast<T>(alpha) *
                        ((x / static_cast<T>(alpha)).exp() - static_cast<T>(1)),
                    x);
  }
};

template <typename T>
struct CELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto temp_a_pos = static_cast<T>(alpha > 0);
    auto temp_a_neg = static_cast<T>(alpha <= 0);
    auto temp_x_pos = (x > static_cast<T>(0)).template cast<T>();
    auto temp_x_neg = (x <= static_cast<T>(0)).template cast<T>();

    // dx = dout, if alpha > 0 and x > 0
    // dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0
    // dx = dout , if alpha < 0 and x > 0
    // dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0
    dx.device(d) =
        dout * temp_a_pos * temp_x_pos +
        dout * (x / static_cast<T>(alpha)).exp() * temp_a_pos * temp_x_neg +
        dout * temp_a_neg * temp_x_pos +
        dout * (x / static_cast<T>(alpha)).exp() * temp_a_neg * temp_x_neg;
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

Q
QI JUN 已提交
1638
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
1639 1640 1641 1642 1643 1644
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1645 1646 1647
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
1648 1649 1650
  }
};

1651 1652 1653 1654 1655 1656
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1657 1658 1659 1660
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
1661
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
1662
  }
1663 1664

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1665 1666
};

W
wangzhen38 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
template <typename T>
struct LogitFunctor {
  template <typename Device, typename X, typename Out, typename P>
  void operator()(Device d, X x, Out out, P p, float eps) const {
    // logit(x) = ln(x/(1-x))
    auto tmp_x =
        (x.cwiseMin(static_cast<T>(1.0 - eps))).cwiseMax(static_cast<T>(eps));

    if (!eps) {
      out.device(d) = (x < static_cast<T>(0.0) || x > static_cast<T>(1.0))
                          .select(p.constant(static_cast<T>(NAN)),
                                  (tmp_x / (static_cast<T>(1) - tmp_x)).log());
    } else {
      out.device(d) = (tmp_x / (static_cast<T>(1) - tmp_x)).log();
    }
  }
};

template <typename T>
struct LogitGradFunctor {
  template <typename Device, typename X, typename dOut, typename dX, typename P>
  void operator()(Device d, X x, dOut dout, dX dx, P p, float eps) const {
    // logit(x)' = 1/(x*(1-x))
    dx.device(d) =
        (x < static_cast<T>(eps) || x > static_cast<T>(1.0 - eps))
            .select(p.constant(static_cast<T>(0)),
                    dout * (static_cast<T>(1) / ((static_cast<T>(1) - x) * x)));
  }
};

1697 1698 1699 1700 1701 1702 1703
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1704

F
fengjiayi 已提交
1705 1706 1707
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1708
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
1709 1710 1711
  }
};

1712 1713 1714 1715 1716 1717 1718
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1719

F
fengjiayi 已提交
1720 1721 1722
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1723 1724 1725
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
1726
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
1727
  }
1728 1729

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
1730 1731
};

1732 1733 1734 1735 1736 1737 1738
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1739 1740
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1741
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1742
    out.device(d) = (x > th).template cast<T>() * x;
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1753 1754 1755
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1756
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1757
    dx.device(d) = dout * (x > th).template cast<T>();
1758
  }
1759 1760

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1761 1762
};

1763 1764 1765 1766 1767 1768 1769 1770
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
1771 1772
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1773
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
1774 1775
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
F
fengjiayi 已提交
1786 1787 1788 1789 1790 1791 1792
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
1793
  }
1794 1795

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1796 1797
};

A
Abhinav Arora 已提交
1798 1799 1800 1801 1802 1803 1804
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1805 1806 1807
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1818 1819
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
1820
  void operator()(Device d, X x, Out fake_out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
1821
    auto temp1 = static_cast<T>(1) /
1822
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
1823
    auto out = x * temp1;
D
dzhwinter 已提交
1824 1825
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
1826
  }
1827 1828

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
A
Abhinav Arora 已提交
1829 1830
};

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
/*
 * in arguments: x, out, ddx
 * out arguments: ddout, dout, dx
 */
template <ActBwdOpFwdDeps kDepValue>
inline void ExtractActivationDoubleGradTensor(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** ddX,
    framework::Tensor** dX, framework::Tensor** dOut,
    framework::Tensor** ddOut) {
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
1843 1844 1845 1846
  PADDLE_ENFORCE_NOT_NULL(
      ddx_var, platform::errors::NotFound(
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.InputName("DDX")));
H
hong 已提交
1847
  if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    *ddX = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*ddx_var);
    if (ddo_var) {
      *ddOut = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          ddo_var);
    }
  } else {
    *ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      *ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
  }
1859 1860 1861 1862 1863
  PADDLE_ENFORCE_NOT_NULL(
      *ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable Output, variable name = %s",
          ctx.OutputName("DDX")));
1864 1865 1866

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
    auto x_var = ctx.InputVar("X");
1867 1868
    PADDLE_ENFORCE_NOT_NULL(
        x_var, platform::errors::NotFound(
1869
                   "Cannot get input Variable Out, variable name = %s",
1870
                   ctx.InputName("X")));
1871
    auto dx_var = ctx.OutputVar("DX");
H
hong 已提交
1872
    if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
      if (dx_var) {
        *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
            dx_var);
      }
    } else {
      *X = ctx.Input<framework::Tensor>("X");
      if (dx_var) {
        *dX = ctx.Output<framework::Tensor>("DX");
      }
    }
  } else {
H
hong 已提交
1885
    VLOG(10) << "Inplace activation of Op: " << ctx.Type();
1886 1887
    *X = *ddX;
  }
1888 1889
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    auto out_var = ctx.InputVar("Out");
1890 1891 1892 1893 1894
    PADDLE_ENFORCE_NOT_NULL(
        out_var,
        platform::errors::NotFound(
            "Cannot get the tensor from the Variable Out, variable name = %s",
            ctx.InputName("Out")));
1895
    auto dout_var = ctx.OutputVar("DOut");
H
hong 已提交
1896
    if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
      if (dout_var) {
        *dOut =
            paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
                dout_var);
      }
    } else {
      *Out = ctx.Input<framework::Tensor>("Out");
      if (dout_var) {
        *dOut = ctx.Output<framework::Tensor>("DOut");
      }
    }
  } else {
H
hong 已提交
1911
    VLOG(10) << "Inplace activation of Op: " << ctx.Type();
1912 1913
    *Out = *ddX;
  }
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
}

template <typename DeviceContext, typename Functor>
class ActivationDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *Out, *ddX;
    X = Out = ddX = nullptr;
    framework::Tensor *ddOut, *dOut, *dX;
    ddOut = dOut = dX = nullptr;

    ExtractActivationDoubleGradTensor<Functor::FwdDeps()>(ctx, &X, &Out, &ddX,
                                                          &dX, &dOut, &ddOut);

    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(ctx.GetPlace());
    if (dX) dX->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, Out, ddX, ddOut, dOut, dX);
  }
};

Z
Zhong Hui 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
template <typename T>
struct AbsGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "AbsGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "AbsGradGrad"));
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "AbsGradGrad"));
      ddout.device(*d) = ddx * x.sign();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

1966 1967 1968 1969 1970 1971 1972 1973
template <typename T>
struct ReluGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1974 1975 1976 1977
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "ReluGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "ReluGradGrad"));
1978
    if (ddOut) {
1979 1980
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "ReluGradGrad"));
1981 1982 1983 1984 1985 1986
      ddout.device(*d) = ddx * (out > static_cast<T>(0)).template cast<T>();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
template <typename T>
struct LeakyReluGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    if (ddOut) {
Z
Zeng Jinle 已提交
1999
      auto* d = dev.eigen_device();
2000 2001
      auto ddx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddX, "Input", "DDX", "LeakyReluGradGrad"));
2002 2003
      auto x = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(X, "Input", "X", "LeakyReluGradGrad"));
2004 2005
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DOut", "LeakyReluGradGrad"));
2006 2007 2008 2009 2010
      ddout.device(*d) =
          ddx *
          ((x > static_cast<T>(0)).template cast<T>() +
           static_cast<T>(alpha) * (x <= static_cast<T>(0)).template cast<T>())
              .template cast<T>();
2011 2012
    }
  }
2013
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
2014 2015
};

D
Double_V 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
template <typename T>
struct ELUGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
2027 2028 2029 2030
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "ELUGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ELUGradGrad"));
D
Double_V 已提交
2031 2032

    if (dX) {
2033 2034 2035 2036
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "ELUGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "ELUGradGrad"));
D
Double_V 已提交
2037
      dx.device(*d) = ddx * dout * static_cast<T>(alpha) * x.exp() *
2038
                      (x <= static_cast<T>(0)).template cast<T>();
D
Double_V 已提交
2039 2040 2041
    }

    if (ddOut) {
2042 2043
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "ELUGradGrad"));
D
Double_V 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
      ddout.device(*d) = ddx *
                         ((x > static_cast<T>(0)).template cast<T>() +
                          static_cast<T>(alpha) * x.exp() *
                              (x <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
template <typename T>
struct CELUGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "CELUGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "CELUGradGrad"));

    if (dX) {
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "CELUGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "CELUGradGrad"));
      dx.device(*d) = ddx * dout / static_cast<T>(alpha) *
                      (x / static_cast<T>(alpha)).exp() *
                      (x <= static_cast<T>(0)).template cast<T>();
    }

    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "CELUGradGrad"));
      ddout.device(*d) = ddx *
                         ((x > static_cast<T>(0)).template cast<T>() +
                          (x / static_cast<T>(alpha)).exp() *
                              (x <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

L
lvmengsi 已提交
2093 2094 2095 2096 2097 2098 2099
template <typename T>
struct SqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
2100 2101 2102 2103
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SqrtGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "SqrtGradGrad"));
2104 2105
    // sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
    // calculate dy first, so ddy can inplace ddx
L
lvmengsi 已提交
2106
    if (dOut) {
2107 2108 2109 2110
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SqrtGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SqrtGradGrad"));
L
lvmengsi 已提交
2111 2112
      dout.device(*d) = dx * ddx * static_cast<T>(-1) / out;
    }
2113
    if (ddOut) {
2114 2115
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SqrtGradGrad"));
2116 2117
      ddout.device(*d) = ddx * static_cast<T>(0.5) / out;
    }
L
lvmengsi 已提交
2118 2119 2120 2121
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

W
whs 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
template <typename T>
struct RsqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "RsqrtGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "RsqrtGradGrad"));

    // rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * dx * ddx
    if (dOut) {
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "RsqrtGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "RsqrtGradGrad"));
      dout.device(*d) = (static_cast<T>(3.0) / out) * dx * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "RsqrtGradGrad"));
      ddout.device(*d) = ddx * static_cast<T>(-0.5) * out * out * out;
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

2151 2152 2153 2154 2155 2156 2157
template <typename T>
struct SquareGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
2158 2159 2160 2161
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SquareGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "SquareGradGrad"));
2162 2163
    // square GradGrad: ddy=2x*ddx, dx=2dy*ddx
    // calculate dx first, so ddy can inplace ddx
2164
    if (dX) {
2165 2166 2167 2168
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SquareGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SquareGradGrad"));
2169 2170
      dx.device(*d) = ddx * static_cast<T>(2) * dout;
    }
2171
    if (ddOut) {
2172 2173
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SquareGradGrad"));
2174 2175
      ddout.device(*d) = ddx * static_cast<T>(2) * x;
    }
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

// TODO(dengkaipeng): double gradient calculation for Square/Sqrt need
// DOut(dy) as input(not output), tensor extraction is different from
// others. Impliment extraction kernel seperately here.
inline void ExtractDoubleGradTensorWithInputDOut(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** ddX, framework::Tensor** dX,
    const framework::Tensor** dOut, framework::Tensor** ddOut) {
  // extract ddX(output), ddOut(input)
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
2190 2191 2192 2193
  PADDLE_ENFORCE_NOT_NULL(
      ddx_var, platform::errors::NotFound(
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.InputName("DDX")));
2194 2195 2196 2197
  *ddX = ctx.Input<framework::Tensor>("DDX");
  if (ddo_var) {
    *ddOut = ctx.Output<framework::Tensor>("DDOut");
  }
2198 2199 2200 2201 2202
  PADDLE_ENFORCE_NOT_NULL(
      ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable DDX, variable name = %s",
          ctx.OutputName("DDX")));
2203 2204 2205

  // extract x(input), dx(output)
  auto x_var = ctx.InputVar("X");
2206 2207
  PADDLE_ENFORCE_NOT_NULL(
      x_var, platform::errors::NotFound(
2208
                 "Cannot get input Variable Out, variable name = %s",
2209
                 ctx.InputName("X")));
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
  auto dx_var = ctx.OutputVar("DX");
  *X = ctx.Input<framework::Tensor>("X");
  if (dx_var) {
    *dX = ctx.Output<framework::Tensor>("DX");
  }

  // extract dOut(input)
  auto dout_var = ctx.InputVar("DOut");
  if (dout_var) {
    *dOut = ctx.Input<framework::Tensor>("DOut");
  }
}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
template <typename DeviceContext, typename Functor>
class SigmoidDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut;
    framework::Tensor *dOutNew, *ddOut;
    Out = ddX = dOut = nullptr;
    dOutNew = ddOut = nullptr;
    // extract ddx(input) and out(input)
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable ddX, variable name = %s",
                 ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        Out, platform::errors::NotFound(
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.InputName("Out")));
    // set output ddout
    ddOut = ctx.Output<framework::Tensor>("DDOut");
    // extract dOut(intput)
    dOut = ctx.Input<framework::Tensor>("DOut");
    PADDLE_ENFORCE_NOT_NULL(
        dOut, platform::errors::NotFound(
                  "Cannot get input Variable dOut, variable name = %s",
                  ctx.InputName("DOut")));
    dOutNew = ctx.Output<framework::Tensor>("DOutNew");
    if (dOutNew) dOutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, dOutNew, ddOut);
  }
};

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
// Out, DDX, DOut, D_DDOut, D_DOut_New   // input
// D_OutNew, D_DOut, D_DDx               // output
template <typename DeviceContext, typename Functor>
class SigmoidTripleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut, *d_ddOut, *d_dOutNew;
    framework::Tensor *d_OutNew, *d_dOut, *d_ddx;
    Out = ddX = dOut = d_ddOut = d_dOutNew = nullptr;
    d_OutNew = d_dOut = d_ddx = nullptr;

    // extract ddx(input), out(input), dOut(input), d_ddOut(input),
    // d_dOutNew(input)
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");
    dOut = ctx.Input<framework::Tensor>("DOut");
    d_ddOut = ctx.Input<framework::Tensor>("D_DDOut");
    d_dOutNew = ctx.Input<framework::Tensor>("D_DOut_New");

    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable ddX, variable name = %s",
                 ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        Out, platform::errors::NotFound(
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.InputName("Out")));
    PADDLE_ENFORCE_NOT_NULL(
        dOut, platform::errors::NotFound(
                  "Cannot get input Variable dOut, variable name = %s",
                  ctx.InputName("DOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_ddOut, platform::errors::NotFound(
                     "Cannot get input Variable d_ddOut, variable name = %s",
                     ctx.InputName("D_DDOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_dOutNew,
        platform::errors::NotFound(
            "Cannot get input Variable d_dOutNew, variable name = %s",
            ctx.InputName("D_DOutNew")));

    // set output d_OutNew、d_dOut、d_ddx
    d_dOut = ctx.Output<framework::Tensor>("D_DOut");
    d_OutNew = ctx.Output<framework::Tensor>("D_OutNew");
    d_ddx = ctx.Output<framework::Tensor>("D_DDx");

    if (d_dOut) d_dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_OutNew) d_OutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_ddx) d_ddx->mutable_data<T>(ddX->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, d_ddOut, d_dOutNew,  // input
            d_dOut, d_OutNew, d_ddx);                   // output
  }
};

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
template <typename DeviceContext, typename Functor>
class TanhDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut;
    framework::Tensor *dOutNew, *ddOut;
    Out = ddX = dOut = nullptr;
    dOutNew = ddOut = nullptr;

    // extract ddx(input) and out(input)
    auto ddx_var = ctx.InputVar("DDX");
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable ddx, variable name = %s",
                     ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable out, variable name = %s",
                     ctx.InputName("Out")));
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");

    // set output ddout
    auto ddout_var = ctx.OutputVar("DDOut");
    if (ddout_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }

    // extract dOut(intput)
    auto dout_var = ctx.InputVar("DOut");
    PADDLE_ENFORCE_NOT_NULL(
        dout_var, platform::errors::NotFound(
                      "Cannot get input Variable dout_var, variable name = %s",
                      ctx.InputName("DOut")));
    dOut = ctx.Input<framework::Tensor>("DOut");

    // set output dout_new
    auto dout_new_var = ctx.OutputVar("DOutNew");
    if (dout_new_var) {
      dOutNew = ctx.Output<framework::Tensor>("DOutNew");
    }

    if (dOutNew) dOutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, dOutNew, ddOut);
  }
};
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

template <typename DeviceContext, typename Functor>
class TanhTripeGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut, *d_ddOut, *d_dOutNew;
    framework::Tensor *d_OutNew, *d_dOut, *d_ddx;
    Out = ddX = dOut = d_ddOut = d_dOutNew = nullptr;
    d_OutNew = d_dOut = d_ddx = nullptr;

    // extract ddx(input), out(input), dOut(input), d_ddOut(input),
    // d_dOutNew(input)
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");
    dOut = ctx.Input<framework::Tensor>("DOut");
    d_ddOut = ctx.Input<framework::Tensor>("D_DDOut");
    d_dOutNew = ctx.Input<framework::Tensor>("D_DOut_New");

    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable ddX, variable name = %s",
                 ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        Out, platform::errors::NotFound(
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.InputName("Out")));
    PADDLE_ENFORCE_NOT_NULL(
        dOut, platform::errors::NotFound(
                  "Cannot get input Variable dOut, variable name = %s",
                  ctx.InputName("DOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_ddOut, platform::errors::NotFound(
                     "Cannot get input Variable d_ddOut, variable name = %s",
                     ctx.InputName("D_DDOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_dOutNew,
        platform::errors::NotFound(
            "Cannot get input Variable d_dOutNew, variable name = %s",
            ctx.InputName("D_DOutNew")));

    // set output d_OutNew、d_dOut、d_ddx
    d_dOut = ctx.Output<framework::Tensor>("D_DOut");
    d_OutNew = ctx.Output<framework::Tensor>("D_OutNew");
    d_ddx = ctx.Output<framework::Tensor>("D_DDx");

    if (d_dOut) d_dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_OutNew) d_OutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_ddx) d_ddx->mutable_data<T>(ddX->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, d_ddOut, d_dOutNew,  // input
            d_dOut, d_OutNew, d_ddx);                   // output
  }
};

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
template <typename DeviceContext, typename Functor>
class SquareDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

L
lvmengsi 已提交
2441 2442
    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
2443 2444 2445 2446 2447 2448 2449 2450

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

2451 2452 2453 2454
template <typename DeviceContext, typename Functor>
class LogDoubleGradKernel
    : public SquareDoubleGradKernel<DeviceContext, Functor> {};

D
Double_V 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
template <typename DeviceContext, typename Functor>
class ELUDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

L
lvmengsi 已提交
2482
template <typename DeviceContext, typename Functor>
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
class CELUDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

template <typename DeviceContext, typename Functor>
L
lvmengsi 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
class SqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
2523 2524 2525 2526
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable DDX, variable name = %s",
                     ctx.InputName("DDX")));
L
lvmengsi 已提交
2527 2528 2529 2530
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
2531 2532 2533 2534
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable DDX, variable name = %s",
                 ctx.InputName("DDX")));
L
lvmengsi 已提交
2535 2536 2537

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
2538 2539 2540 2541
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     ctx.InputName("Out")));
L
lvmengsi 已提交
2542 2543 2544 2545 2546 2547 2548 2549
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
2550 2551 2552 2553
    PADDLE_ENFORCE_NOT_NULL(
        dx_var, platform::errors::NotFound(
                    "Cannot get input Variable DX, variable name = %s",
                    ctx.InputName("DX")));
L
lvmengsi 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

W
whs 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3 / y) * dx * ddx
template <typename DeviceContext, typename Functor>
class RsqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable DDX, variable name = %s",
                     ctx.InputName("DDX")));
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable DDX, variable name = %s",
                 ctx.InputName("DDX")));

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     ctx.InputName("Out")));
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
    PADDLE_ENFORCE_NOT_NULL(
        dx_var, platform::errors::NotFound(
                    "Cannot get input Variable DX, variable name = %s",
                    ctx.InputName("DX")));
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
template <typename DeviceContext, typename Functor>
class PowKernel : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;

  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
    Out->mutable_data<T>(context.GetPlace());

2640 2641 2642 2643
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Pow"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Pow"));
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor = context.HasInput("FactorTensor")
                              ? context.Input<framework::Tensor>("FactorTensor")
                              : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
2665 2666 2667 2668 2669
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out);
  }
};

template <typename DeviceContext, typename Functor>
class PowGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
    dX->mutable_data<T>(context.GetPlace());
2690 2691 2692 2693 2694 2695 2696 2697
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "PowGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "PowGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Output", "X@GRAD", "PowGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "PowGrad"));
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor =
        context.HasInput("FactorTensor")
            ? context.Input<framework::LoDTensor>("FactorTensor")
            : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
2720 2721 2722 2723 2724
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
2725 2726 2727 2728 2729 2730 2731
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out, dout, dx);
  }
};
2732

W
wangzhen38 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
template <typename DeviceContext, typename T>
class LogitKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* out = context.Output<framework::Tensor>("Out");
    auto* in = context.Input<framework::Tensor>("X");
    auto eps = context.Attr<float>("eps");
    out->mutable_data<T>(in->place());

    auto eigen_out = framework::EigenVector<T>::Flatten(*out);
    auto eigen_in = framework::EigenVector<T>::Flatten(*in);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto eigen_p = framework::EigenVector<T>::Flatten(*out);

    LogitFunctor<T> functor;
    functor(place, eigen_in, eigen_out, eigen_p, eps);
  }
};

template <typename DeviceContext, typename T>
class LogitGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* dout =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto eps = context.Attr<float>("eps");
    dx->mutable_data<T>(dout->place());

    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_dout = framework::EigenVector<T>::Flatten(*dout);
    auto eigen_dx = framework::EigenVector<T>::Flatten(*dx);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto eigen_p = framework::EigenVector<T>::Flatten(*x);

    LogitGradFunctor<T> functor;
    functor(place, eigen_x, eigen_dout, eigen_dx, eigen_p, eps);
  }
};

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
template <typename T>
struct LogGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "LogGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "LogGradGrad"));
    // ddout = ddx / x; dx = -(dout / x) * (ddx / x)
    // calculate dx first, so ddout can inplace ddx
    if (dX) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "LogGradGrad"));
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "LogGradGrad"));
      dx.device(*d) = dout * static_cast<T>(-1) * ddx / (x * x);
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "LogGradGrad"));
      ddout.device(*d) = ddx * static_cast<T>(1) / x;
    }
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

Q
qijun 已提交
2806 2807
}  // namespace operators
}  // namespace paddle
2808

2809
#define FOR_EACH_ACTIVATION_OP(__macro)                                       \
M
minghaoBD 已提交
2810
  __macro(silu, Silu, SiluFunctor, SiluGradFunctor);                          \
2811 2812 2813 2814 2815 2816
  __macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);  \
  __macro(atan, Atan, AtanFunctor, AtanGradFunctor);                          \
  __macro(softshrink, SoftShrink, SoftShrinkFunctor, SoftShrinkGradFunctor);  \
  __macro(ceil, Ceil, CeilFunctor, ZeroGradFunctor);                          \
  __macro(floor, Floor, FloorFunctor, ZeroGradFunctor);                       \
  __macro(cos, Cos, CosFunctor, CosGradFunctor);                              \
J
joejiong 已提交
2817
  __macro(tan, Tan, TanFunctor, TanGradFunctor);                              \
2818 2819 2820
  __macro(acos, Acos, AcosFunctor, AcosGradFunctor);                          \
  __macro(sin, Sin, SinFunctor, SinGradFunctor);                              \
  __macro(asin, Asin, AsinFunctor, AsinGradFunctor);                          \
2821 2822
  __macro(sinh, Sinh, SinhFunctor, SinhGradFunctor);                          \
  __macro(cosh, Cosh, CoshFunctor, CoshGradFunctor);                          \
X
xiaoting 已提交
2823 2824 2825
  __macro(asinh, Asinh, AsinhFunctor, AsinhGradFunctor);                      \
  __macro(acosh, Acosh, AcoshFunctor, AcoshGradFunctor);                      \
  __macro(atanh, Atanh, AtanhFunctor, AtanhGradFunctor);                      \
2826 2827
  __macro(round, Round, RoundFunctor, ZeroGradFunctor);                       \
  __macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);  \
2828
  __macro(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);                      \
J
joejiong 已提交
2829
  __macro(log2, Log2, Log2Functor, Log2GradFunctor);                          \
J
joejiong 已提交
2830
  __macro(log10, Log10, Log10Functor, Log10GradFunctor);                      \
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
  __macro(brelu, BRelu, BReluFunctor, BReluGradFunctor);                      \
  __macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor);         \
  __macro(stanh, STanh, STanhFunctor, STanhGradFunctor);                      \
  __macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor);          \
  __macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor);          \
  __macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor);                      \
  __macro(tanh_shrink, TanhShrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
  __macro(hard_shrink, HardShrink, HardShrinkFunctor, HardShrinkGradFunctor); \
  __macro(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,                      \
          HardSigmoidGradFunctor);                                            \
  __macro(swish, Swish, SwishFunctor, SwishGradFunctor);                      \
  __macro(thresholded_relu, ThresholdedRelu, ThresholdedReluFunctor,          \
H
huangjun12 已提交
2843 2844
          ThresholdedReluGradFunctor);                                        \
  __macro(hard_swish, HardSwish, HardSwishFunctor, HardSwishGradFunctor);