activation_op.h 61.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
12 13

#pragma once
D
dzhwinter 已提交
14
#include <glog/logging.h>
Y
Yihua Xu 已提交
15
#include <algorithm>
16
#include <memory>
D
dzhwinter 已提交
17 18
#include <string>
#include <unordered_set>
19 20
#include <utility>
#include <vector>
21

C
Clementine 已提交
22 23 24 25 26
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

Y
Yi Wang 已提交
27 28
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yihua Xu 已提交
29
#include "paddle/fluid/operators/math/blas.h"
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
32

33 34 35 36
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
37 38 39
namespace paddle {
namespace operators {

40 41
using framework::To32BitIndex;

42 43 44 45 46 47
enum ActBwdOpFwdDeps {
  kNoDeps = 0x00,  // Do not need any forward input/output
  kDepX = 0x01,    // Only need forward input X
  kDepOut = 0x02,  // Only need forward output Out
};

C
chengduo 已提交
48 49 50 51 52 53
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

54 55 56 57 58
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
59 60 61 62 63 64 65 66
  PADDLE_ENFORCE_NOT_NULL(x_var,
                          platform::errors::NotFound(
                              "Cannot get input Variable X, variable name = %s",
                              context.InputName("X")));
  PADDLE_ENFORCE_NOT_NULL(
      out_var, platform::errors::NotFound(
                   "Cannot get output Variable Out, variable name = %s",
                   context.OutputName("Out")));
H
hong 已提交
67
  if (CanBeUsedBySelectedRows.count(context.Type())) {
68 69 70 71 72 73 74 75
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

76 77 78 79
  PADDLE_ENFORCE_NOT_NULL(*Out, platform::errors::NotFound(
                                    "Cannot get the tensor from the Variable "
                                    "Output(Out), variable name = %s",
                                    context.OutputName("Out")));
80 81
}

82
template <ActBwdOpFwdDeps kDepValue>
83 84 85 86 87 88
inline void ExtractActivationGradTensor(
    const framework::ExecutionContext& context, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** dOut,
    framework::Tensor** dX) {
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
89 90 91 92
  const framework::Variable* out_var = nullptr;

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    out_var = context.InputVar("Out");
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     context.InputName("Out")));
  }

  PADDLE_ENFORCE_NOT_NULL(
      out_grad_var, platform::errors::NotFound(
                        "Cannot get input Variable %s, variable name = %s",
                        framework::GradVarName("Out"),
                        context.InputName(framework::GradVarName("Out"))));
  PADDLE_ENFORCE_NOT_NULL(
      x_grad_var, platform::errors::NotFound(
                      "Cannot get output Variable %s, variable name = %s",
                      framework::GradVarName("X"),
                      context.OutputName(framework::GradVarName("X"))));
109

H
hong 已提交
110
  if (CanBeUsedBySelectedRows.count(context.Type())) {
111 112 113 114
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
115 116 117 118 119 120 121 122

    if (out_var) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    } else {
      *Out = *dOut;  // fake out
    }

123 124 125 126
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
127 128 129 130 131 132

    if (out_var) {
      *Out = &(out_var->Get<framework::LoDTensor>());
    } else {
      *Out = *dOut;  // fake out
    }
133
  }
134

135 136 137 138 139
  PADDLE_ENFORCE_NOT_NULL(*dX,
                          platform::errors::NotFound(
                              "Cannot get the tensor from the Variable "
                              "Output(Out), variable name = %s",
                              context.OutputName(framework::GradVarName("X"))));
140

141
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
C
chengduo 已提交
142
    auto x_var = context.InputVar("X");
143 144 145 146
    PADDLE_ENFORCE_NOT_NULL(x_var, platform::errors::NotFound(
                                       "Cannot get the tensor from the "
                                       "Variable Input(X), variable name = %s",
                                       context.InputName("X")));
H
hong 已提交
147
    if (CanBeUsedBySelectedRows.count(context.Type())) {
148
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
149
    } else {
150
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
151
    }
152
  } else {
H
hong 已提交
153
    VLOG(10) << " Inplace activation of Op : " << context.Type();
154 155 156
    *X = *dX;
  }
}
C
chengduo 已提交
157

158 159 160 161 162
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
163

164 165 166 167
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
168
    Out->mutable_data<T>(context.GetPlace());
169

170 171 172 173
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Activation"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Activation"));
Q
QI JUN 已提交
174 175
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
176
    Functor functor;
177 178 179 180 181

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
182 183 184 185 186 187 188 189
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out));
    } else {
      functor(*place, x, out);
    }
Q
qijun 已提交
190 191 192
  }
};

Q
QI JUN 已提交
193
template <typename DeviceContext, typename Functor>
194 195
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
196
 public:
197
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
198
  void Compute(const framework::ExecutionContext& context) const override {
199 200 201
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
202 203
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
Q
qijun 已提交
204
    dX->mutable_data<T>(context.GetPlace());
205 206 207 208 209 210 211 212
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "ActivationGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "ActivationGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Input", "X@GRAD", "ActivationGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ActivationGrad"));
Q
QI JUN 已提交
213 214
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
215
    Functor functor;
216 217 218 219
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
220 221 222 223 224 225 226 227 228
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out), To32BitIndex(dout),
              To32BitIndex(dx));
    } else {
      functor(*place, x, out, dout, dx);
    }
Q
qijun 已提交
229 230 231
  }
};

232 233 234 235 236 237 238 239 240
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

241
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
242
template <typename T>
243
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
244 245 246
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
247 248 249
  }
};

250
template <typename T>
251
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
252 253 254 255
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
256
  }
257 258

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
259 260
};

261 262 263 264
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
265
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
266 267 268 269 270 271 272 273 274 275
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
276 277
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
278
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
279
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
280 281 282 283 284 285 286 287
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
288 289 290
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
291 292
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
293
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
294
  }
295 296

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
297 298
};

Q
qijun 已提交
299
// exp(x) = e^x
300 301
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
302 303 304
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
305 306 307
  }
};

308 309
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
310 311 312 313
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
314
  }
315 316

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
317 318
};

Q
qijun 已提交
319
// relu(x) = max(x, 0)
Q
qijun 已提交
320
template <typename T>
321
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
322 323 324
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
325 326
  }
};
Q
qijun 已提交
327

Q
qijun 已提交
328
template <typename T>
329
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
330 331 332
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
333
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
334
  }
335 336

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
337
};
Q
qijun 已提交
338

339
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
340 341
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
342 343 344
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
345 346 347 348
  }
};

template <typename T>
349
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
350 351 352 353
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
354
  }
355 356

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
357 358
};

K
Kavya Srinet 已提交
359 360 361 362
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
363 364 365
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
366 367 368 369 370
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
371 372 373 374
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
375
  }
376 377

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
Kavya Srinet 已提交
378 379
};

380 381 382 383 384 385 386 387 388
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
389 390
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Z
Zeng Jinle 已提交
391 392
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>();
F
fengjiayi 已提交
393
    out.device(d) = x * (temp1 + temp2);
394 395 396 397 398 399 400 401 402 403 404
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
405 406 407
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
408 409
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>();
F
fengjiayi 已提交
410
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
411
  }
412 413

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
414 415
};

K
Kexin Zhao 已提交
416
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
417 418 419 420 421 422 423 424
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
425 426
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
427
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
428 429
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
430
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
431 432 433 434 435 436 437 438 439
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
440 441 442
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
443
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
444 445
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
446
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
447
  }
448 449

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
450 451
};

Q
qijun 已提交
452
// sqrt(x) = x^(1/2)
453 454
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
455 456 457
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
458 459 460 461
  }
};

template <typename T>
462
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
463 464 465
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
466
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
467
  }
468 469

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
470 471
};

Z
zhoukunsheng 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485
// rsqrt(x) = x^(-1/2)
template <typename T>
struct RsqrtFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.rsqrt();
  }
};

template <typename T>
struct RsqrtGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
486
    dx.device(d) = static_cast<T>(-0.5) * dout * out * out * out;
Z
zhoukunsheng 已提交
487
  }
Z
zhoukunsheng 已提交
488 489

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Z
zhoukunsheng 已提交
490 491
};

D
dzhwinter 已提交
492 493 494
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
495 496 497
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
498 499 500 501 502
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
503 504 505
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
506
    dx.device(d) = static_cast<T>(0) * out;
D
dzhwinter 已提交
507
  }
508 509

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kNoDeps; }
D
dzhwinter 已提交
510 511 512 513 514
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
515 516
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
517
    out.device(d) = x.floor();
D
dzhwinter 已提交
518 519 520
  }
};

C
add cos  
chengduoZH 已提交
521 522 523 524 525
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

526 527 528 529 530 531 532
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
533 534 535 536 537
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

538 539 540 541 542 543 544
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
545 546 547 548 549 550 551 552
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
553 554

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
574 575

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
576 577 578 579 580 581 582 583 584 585 586
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
template <typename T>
struct Acos {
  HOSTDEVICE T operator()(const T& val) const { return acos(val); }
};

template <>
struct Acos<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(acos(static_cast<float>(val)));
  }
};

// Acos(x) = acos(x)
template <typename T>
struct AcosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Acos<T>());
  }
};

// acos'(x) = -1/sqrt(1-x^2)
template <typename T>
struct AcosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        -dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
617 618

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
};

template <typename T>
struct Asin {
  HOSTDEVICE T operator()(const T& val) const { return asin(val); }
};

template <>
struct Asin<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(asin(static_cast<float>(val)));
  }
};

// Asin(x) = asin(x)
template <typename T>
struct AsinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Asin<T>());
  }
};

// asin'(x) = 1/sqrt(1-x^2)
template <typename T>
struct AsinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
651 652

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
};

template <typename T>
struct Atan {
  HOSTDEVICE T operator()(const T& val) const { return atan(val); }
};

template <>
struct Atan<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(atan(static_cast<float>(val)));
  }
};

// Atan(x) = atan(x)
template <typename T>
struct AtanFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Atan<T>());
  }
};

// atan'(x) =  1 / (1 + x^2)
template <typename T>
struct AtanGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (static_cast<T>(1) + x.square());
  }
684 685

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
686 687
};

D
dzhwinter 已提交
688 689 690
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
691 692 693
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
694 695 696
  }
};

Q
qijun 已提交
697
// abs(x) = |x|
698 699
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
700 701 702
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
703 704 705
  }
};

706 707
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
708 709 710 711
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
712
  }
713

714
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
715 716
};

Q
qijun 已提交
717 718
// reciprocal(x) = 1 / x
template <typename T>
719
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
720 721 722
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
723 724 725
  }
};

726
template <typename T>
727
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
728 729 730 731
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
732
  }
733 734

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
735 736 737
};

// log(x) = natural logarithm of x
738 739
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
740 741 742
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
743 744 745
  }
};

746
template <typename T>
747
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
748 749 750 751
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
752
  }
753 754

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
755 756
};

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
// log1p(x) = natural logarithm of x+1
template <typename T>
struct Log1pFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (static_cast<T>(1) + x).log();
  }
};

template <typename T>
struct Log1pGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / (x + static_cast<T>(1)));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

Q
qijun 已提交
777
// square(x) = x^2
778 779
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
780 781 782
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
783
  }
784
};
Q
qijun 已提交
785

786
template <typename T>
787
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
788 789 790 791
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
792
  }
793 794

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
795 796
};

797 798 799 800 801 802 803 804 805 806
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
807

F
fengjiayi 已提交
808 809 810
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
811
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
812 813 814
  }
};

815 816 817 818 819 820 821
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
822 823 824 825
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
826 827
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
828
  }
829 830

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
831 832
};

833 834 835 836 837 838 839 840 841
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
842 843 844
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
845
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
846 847 848 849 850 851 852 853 854
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
855 856 857
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
858 859 860 861
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
862
  }
863 864

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
865 866
};

H
huangjun12 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
// HardSwish = min(max(0, x+3), 6) * x / 6
template <typename T>
struct HardSwishFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (x + static_cast<T>(offset))
                        .cwiseMax(static_cast<T>(0))
                        .cwiseMin(static_cast<T>(threshold)) *
                    x / static_cast<T>(scale);
  }
};

template <typename T>
struct HardSwishGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto tmp = ((x + static_cast<T>(offset)) < static_cast<T>(threshold))
                   .template cast<T>();
    dx.device(d) =
        dout *
        (((x + static_cast<T>(offset)) > static_cast<T>(0)).template cast<T>() *
             (static_cast<T>(2) * x + static_cast<T>(offset)) /
             static_cast<T>(scale) * tmp +
         static_cast<T>(1) * (static_cast<T>(1) - tmp));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

K
kexinzhao 已提交
912 913 914 915 916 917 918
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
919 920
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
921
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
922
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
923 924 925 926 927 928 929 930 931
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
932 933 934
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
935
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
936 937
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
938
  }
939 940

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
kexinzhao 已提交
941 942
};

943 944
// softsign(x) = x / (1 + |x|)
template <typename T>
945
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
946 947 948
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
949 950 951 952 953 954
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
955
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
956 957 958
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
959
    dx.device(d) =
F
fengjiayi 已提交
960
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
961
  }
962 963

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
964 965
};

966 967 968 969 970 971
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
972

F
fengjiayi 已提交
973 974
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
975 976
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
977
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
978 979 980
  }
};

981 982 983 984 985 986
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
987 988 989
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
990
    auto tmp = static_cast<T>(threshold);
Z
Zeng Jinle 已提交
991
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>();
F
fengjiayi 已提交
992
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
993
  }
994 995

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
996 997
};

K
Kavya Srinet 已提交
998 999 1000 1001 1002 1003
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1004

F
fengjiayi 已提交
1005 1006 1007
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
1008 1009 1010
  }
};

K
Kavya Srinet 已提交
1011 1012 1013 1014 1015 1016
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1017 1018 1019
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
1020
    auto temp1 =
1021 1022
        static_cast<T>(alpha) * (out <= static_cast<T>(0)).template cast<T>();
    auto temp2 = (out > static_cast<T>(0)).template cast<T>();
F
fengjiayi 已提交
1023
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
1024
  }
1025

Z
Zeng Jinle 已提交
1026
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1027 1028
};

1029 1030 1031 1032 1033 1034
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1035

F
fengjiayi 已提交
1036 1037 1038 1039 1040
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
1041 1042 1043
  }
};

1044 1045 1046 1047 1048 1049
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1050 1051 1052 1053
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
1054
                   dout * static_cast<T>(alpha) * x.exp() *
D
Double_V 已提交
1055
                       (x <= static_cast<T>(0)).template cast<T>();
1056
  }
1057 1058

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1059 1060
};

Q
QI JUN 已提交
1061
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
1062 1063 1064 1065 1066 1067
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1068 1069 1070
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
1071 1072 1073
  }
};

1074 1075 1076 1077 1078 1079
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1080 1081 1082 1083
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
1084
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
1085
  }
1086 1087

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1088 1089
};

1090 1091 1092 1093 1094 1095 1096
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1097

F
fengjiayi 已提交
1098 1099 1100
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1101
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
1102 1103 1104
  }
};

1105 1106 1107 1108 1109 1110 1111
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1112

F
fengjiayi 已提交
1113 1114 1115
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1116 1117 1118
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
1119
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
1120
  }
1121 1122

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
1123 1124
};

1125 1126 1127 1128 1129 1130 1131
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1132 1133
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1134
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1135
    out.device(d) = (x > th).template cast<T>() * x;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1146 1147 1148
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1149
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1150
    dx.device(d) = dout * (x > th).template cast<T>();
1151
  }
1152 1153

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1154 1155
};

1156 1157 1158 1159 1160 1161 1162 1163
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
1164 1165
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1166
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
1167 1168
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
F
fengjiayi 已提交
1179 1180 1181 1182 1183 1184 1185
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
1186
  }
1187 1188

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1189 1190
};

A
Abhinav Arora 已提交
1191 1192 1193 1194 1195 1196 1197
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1198 1199 1200
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1211 1212
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
1213
  void operator()(Device d, X x, Out fake_out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
1214
    auto temp1 = static_cast<T>(1) /
1215
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
1216
    auto out = x * temp1;
D
dzhwinter 已提交
1217 1218
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
1219
  }
1220 1221

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
A
Abhinav Arora 已提交
1222 1223
};

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/*
 * in arguments: x, out, ddx
 * out arguments: ddout, dout, dx
 */
template <ActBwdOpFwdDeps kDepValue>
inline void ExtractActivationDoubleGradTensor(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** ddX,
    framework::Tensor** dX, framework::Tensor** dOut,
    framework::Tensor** ddOut) {
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
1236 1237 1238 1239
  PADDLE_ENFORCE_NOT_NULL(
      ddx_var, platform::errors::NotFound(
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.InputName("DDX")));
H
hong 已提交
1240
  if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    *ddX = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*ddx_var);
    if (ddo_var) {
      *ddOut = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          ddo_var);
    }
  } else {
    *ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      *ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
  }
1252 1253 1254 1255 1256
  PADDLE_ENFORCE_NOT_NULL(
      *ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable Output, variable name = %s",
          ctx.OutputName("DDX")));
1257 1258 1259

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
    auto x_var = ctx.InputVar("X");
1260 1261
    PADDLE_ENFORCE_NOT_NULL(
        x_var, platform::errors::NotFound(
1262
                   "Cannot get input Variable Out, variable name = %s",
1263
                   ctx.InputName("X")));
1264
    auto dx_var = ctx.OutputVar("DX");
H
hong 已提交
1265
    if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
      if (dx_var) {
        *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
            dx_var);
      }
    } else {
      *X = ctx.Input<framework::Tensor>("X");
      if (dx_var) {
        *dX = ctx.Output<framework::Tensor>("DX");
      }
    }
  } else {
H
hong 已提交
1278
    VLOG(10) << "Inplace activation of Op: " << ctx.Type();
1279 1280
    *X = *ddX;
  }
1281 1282
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    auto out_var = ctx.InputVar("Out");
1283 1284 1285 1286 1287
    PADDLE_ENFORCE_NOT_NULL(
        out_var,
        platform::errors::NotFound(
            "Cannot get the tensor from the Variable Out, variable name = %s",
            ctx.InputName("Out")));
1288
    auto dout_var = ctx.OutputVar("DOut");
H
hong 已提交
1289
    if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
      if (dout_var) {
        *dOut =
            paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
                dout_var);
      }
    } else {
      *Out = ctx.Input<framework::Tensor>("Out");
      if (dout_var) {
        *dOut = ctx.Output<framework::Tensor>("DOut");
      }
    }
  } else {
H
hong 已提交
1304
    VLOG(10) << "Inplace activation of Op: " << ctx.Type();
1305 1306
    *Out = *ddX;
  }
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
}

template <typename DeviceContext, typename Functor>
class ActivationDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *Out, *ddX;
    X = Out = ddX = nullptr;
    framework::Tensor *ddOut, *dOut, *dX;
    ddOut = dOut = dX = nullptr;

    ExtractActivationDoubleGradTensor<Functor::FwdDeps()>(ctx, &X, &Out, &ddX,
                                                          &dX, &dOut, &ddOut);

    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(ctx.GetPlace());
    if (dX) dX->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, Out, ddX, ddOut, dOut, dX);
  }
};

template <typename T>
struct ReluGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1346 1347 1348 1349
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "ReluGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "ReluGradGrad"));
1350
    if (ddOut) {
1351 1352
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "ReluGradGrad"));
1353 1354 1355 1356 1357 1358
      ddout.device(*d) = ddx * (out > static_cast<T>(0)).template cast<T>();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
template <typename T>
struct LeakyReluGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    if (ddOut) {
Z
Zeng Jinle 已提交
1371
      auto* d = dev.eigen_device();
1372 1373 1374 1375 1376 1377
      auto ddx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddX, "Input", "DDX", "LeakyReluGradGrad"));
      auto out = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(Out, "Output", "Out", "LeakyReluGradGrad"));
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DOut", "LeakyReluGradGrad"));
1378 1379 1380 1381 1382
      ddout.device(*d) = ddx *
                         ((out > static_cast<T>(0)).template cast<T>() +
                          static_cast<T>(alpha) *
                              (out <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
1383 1384
    }
  }
Z
Zeng Jinle 已提交
1385
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1386 1387
};

D
Double_V 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
template <typename T>
struct ELUGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1399 1400 1401 1402
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "ELUGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ELUGradGrad"));
D
Double_V 已提交
1403 1404

    if (dX) {
1405 1406 1407 1408
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "ELUGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "ELUGradGrad"));
D
Double_V 已提交
1409 1410 1411 1412 1413
      dx.device(*d) = ddx * dout * static_cast<T>(alpha) * x.exp() *
                      (x < static_cast<T>(0)).template cast<T>();
    }

    if (ddOut) {
1414 1415
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "ELUGradGrad"));
D
Double_V 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
      ddout.device(*d) = ddx *
                         ((x > static_cast<T>(0)).template cast<T>() +
                          static_cast<T>(alpha) * x.exp() *
                              (x <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

L
lvmengsi 已提交
1426 1427 1428 1429 1430 1431 1432
template <typename T>
struct SqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1433 1434 1435 1436
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SqrtGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "SqrtGradGrad"));
1437 1438
    // sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
    // calculate dy first, so ddy can inplace ddx
L
lvmengsi 已提交
1439
    if (dOut) {
1440 1441 1442 1443
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SqrtGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SqrtGradGrad"));
L
lvmengsi 已提交
1444 1445
      dout.device(*d) = dx * ddx * static_cast<T>(-1) / out;
    }
1446
    if (ddOut) {
1447 1448
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SqrtGradGrad"));
1449 1450
      ddout.device(*d) = ddx * static_cast<T>(0.5) / out;
    }
L
lvmengsi 已提交
1451 1452 1453 1454
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1455 1456 1457 1458 1459 1460 1461
template <typename T>
struct SquareGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1462 1463 1464 1465
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SquareGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "SquareGradGrad"));
1466 1467
    // square GradGrad: ddy=2x*ddx, dx=2dy*ddx
    // calculate dx first, so ddy can inplace ddx
1468
    if (dX) {
1469 1470 1471 1472
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SquareGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SquareGradGrad"));
1473 1474
      dx.device(*d) = ddx * static_cast<T>(2) * dout;
    }
1475
    if (ddOut) {
1476 1477
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SquareGradGrad"));
1478 1479
      ddout.device(*d) = ddx * static_cast<T>(2) * x;
    }
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

// TODO(dengkaipeng): double gradient calculation for Square/Sqrt need
// DOut(dy) as input(not output), tensor extraction is different from
// others. Impliment extraction kernel seperately here.
inline void ExtractDoubleGradTensorWithInputDOut(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** ddX, framework::Tensor** dX,
    const framework::Tensor** dOut, framework::Tensor** ddOut) {
  // extract ddX(output), ddOut(input)
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
1494 1495 1496 1497
  PADDLE_ENFORCE_NOT_NULL(
      ddx_var, platform::errors::NotFound(
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.InputName("DDX")));
1498 1499 1500 1501
  *ddX = ctx.Input<framework::Tensor>("DDX");
  if (ddo_var) {
    *ddOut = ctx.Output<framework::Tensor>("DDOut");
  }
1502 1503 1504 1505 1506
  PADDLE_ENFORCE_NOT_NULL(
      ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable DDX, variable name = %s",
          ctx.OutputName("DDX")));
1507 1508 1509

  // extract x(input), dx(output)
  auto x_var = ctx.InputVar("X");
1510 1511
  PADDLE_ENFORCE_NOT_NULL(
      x_var, platform::errors::NotFound(
1512
                 "Cannot get input Variable Out, variable name = %s",
1513
                 ctx.InputName("X")));
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
  auto dx_var = ctx.OutputVar("DX");
  *X = ctx.Input<framework::Tensor>("X");
  if (dx_var) {
    *dX = ctx.Output<framework::Tensor>("DX");
  }

  // extract dOut(input)
  auto dout_var = ctx.InputVar("DOut");
  if (dout_var) {
    *dOut = ctx.Input<framework::Tensor>("DOut");
  }
}

template <typename DeviceContext, typename Functor>
class SquareDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

L
lvmengsi 已提交
1540 1541
    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
1542 1543 1544 1545 1546 1547 1548 1549

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

D
Double_V 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
template <typename DeviceContext, typename Functor>
class ELUDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

L
lvmengsi 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
template <typename DeviceContext, typename Functor>
class SqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
1591 1592 1593 1594
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable DDX, variable name = %s",
                     ctx.InputName("DDX")));
L
lvmengsi 已提交
1595 1596 1597 1598
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
1599 1600 1601 1602
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable DDX, variable name = %s",
                 ctx.InputName("DDX")));
L
lvmengsi 已提交
1603 1604 1605

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
1606 1607 1608 1609
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     ctx.InputName("Out")));
L
lvmengsi 已提交
1610 1611 1612 1613 1614 1615 1616 1617
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
1618 1619 1620 1621
    PADDLE_ENFORCE_NOT_NULL(
        dx_var, platform::errors::NotFound(
                    "Cannot get input Variable DX, variable name = %s",
                    ctx.InputName("DX")));
L
lvmengsi 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
template <typename DeviceContext, typename Functor>
class PowKernel : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;

  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
    Out->mutable_data<T>(context.GetPlace());

1647 1648 1649 1650
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Pow"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Pow"));
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor = context.HasInput("FactorTensor")
                              ? context.Input<framework::Tensor>("FactorTensor")
                              : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
1672 1673 1674 1675 1676
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out);
  }
};

template <typename DeviceContext, typename Functor>
class PowGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
    dX->mutable_data<T>(context.GetPlace());
1697 1698 1699 1700 1701 1702 1703 1704
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "PowGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "PowGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Output", "X@GRAD", "PowGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "PowGrad"));
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor =
        context.HasInput("FactorTensor")
            ? context.Input<framework::LoDTensor>("FactorTensor")
            : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
1727 1728 1729 1730 1731
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
1732 1733 1734 1735 1736 1737 1738
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out, dout, dx);
  }
};
Q
qijun 已提交
1739 1740
}  // namespace operators
}  // namespace paddle
1741

1742 1743 1744 1745 1746 1747
#define FOR_EACH_ACTIVATION_OP(__macro)                                       \
  __macro(sigmoid, Sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);  \
  __macro(tanh, Tanh, TanhFunctor, TanhGradFunctor);                          \
  __macro(atan, Atan, AtanFunctor, AtanGradFunctor);                          \
  __macro(softshrink, SoftShrink, SoftShrinkFunctor, SoftShrinkGradFunctor);  \
Z
zhoukunsheng 已提交
1748
  __macro(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);                      \
1749 1750 1751 1752 1753 1754 1755 1756 1757
  __macro(ceil, Ceil, CeilFunctor, ZeroGradFunctor);                          \
  __macro(floor, Floor, FloorFunctor, ZeroGradFunctor);                       \
  __macro(cos, Cos, CosFunctor, CosGradFunctor);                              \
  __macro(acos, Acos, AcosFunctor, AcosGradFunctor);                          \
  __macro(sin, Sin, SinFunctor, SinGradFunctor);                              \
  __macro(asin, Asin, AsinFunctor, AsinGradFunctor);                          \
  __macro(round, Round, RoundFunctor, ZeroGradFunctor);                       \
  __macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);  \
  __macro(log, Log, LogFunctor, LogGradFunctor);                              \
1758
  __macro(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);                      \
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
  __macro(brelu, BRelu, BReluFunctor, BReluGradFunctor);                      \
  __macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor);         \
  __macro(stanh, STanh, STanhFunctor, STanhGradFunctor);                      \
  __macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor);          \
  __macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor);          \
  __macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor);                      \
  __macro(tanh_shrink, TanhShrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
  __macro(hard_shrink, HardShrink, HardShrinkFunctor, HardShrinkGradFunctor); \
  __macro(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,                      \
          HardSigmoidGradFunctor);                                            \
  __macro(swish, Swish, SwishFunctor, SwishGradFunctor);                      \
  __macro(thresholded_relu, ThresholdedRelu, ThresholdedReluFunctor,          \
H
huangjun12 已提交
1771 1772
          ThresholdedReluGradFunctor);                                        \
  __macro(hard_swish, HardSwish, HardSwishFunctor, HardSwishGradFunctor);