test_optimizer.py 58.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import os
import tempfile
Q
Qiao Longfei 已提交
17 18
import unittest

19
import paddle.fluid as fluid
20 21
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
22 23
import paddle.fluid.core as core
import numpy as np
24
from paddle.fluid.backward import append_backward
L
Leo Chen 已提交
25
from paddle.fluid.framework import Program, program_guard, convert_np_dtype_to_dtype_
C
chentianyu03 已提交
26
from paddle.fluid.framework import _test_eager_guard
L
Leo Chen 已提交
27
import paddle
28 29
from paddle.io import Dataset
import numpy
30

Q
Qiao Longfei 已提交
31 32

class TestOptimizer(unittest.TestCase):
33

Q
Qiao Longfei 已提交
34
    def test_sgd_optimizer(self):
35

Q
qiaolongfei 已提交
36 37 38 39
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            mul_x = block.create_parameter(dtype="float32",
                                           shape=[5, 10],
                                           lod_level=0,
                                           name="mul.x",
                                           optimize_attr=optimizer_attr)
            mul_y = block.create_var(dtype="float32",
                                     shape=[10, 8],
                                     lod_level=0,
                                     name="mul.y")
            mul_out = block.create_var(dtype="float32",
                                       shape=[5, 8],
                                       lod_level=0,
                                       name="mul.out")
            mean_out = block.create_var(dtype="float32",
                                        shape=[1],
                                        lod_level=0,
                                        name="mean.out")
            block.append_op(type="mul",
                            inputs={
                                "X": mul_x,
                                "Y": mul_y
                            },
                            outputs={"Out": mul_out},
                            attrs={"x_num_col_dims": 1})
            block.append_op(type="mean",
                            inputs={"X": mul_out},
                            outputs={"Out": mean_out})
Q
qiaolongfei 已提交
67 68 69 70 71
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
72 73
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
Q
Qiao Longfei 已提交
74

Q
qiaolongfei 已提交
75 76 77 78
        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])

Q
Qiao Longfei 已提交
79

80
class TestOptimizerBackwardApplygrad(unittest.TestCase):
81

82
    def test_sgd_optimizer(self):
83

84 85 86 87
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            mul_x = block.create_parameter(dtype="float32",
                                           shape=[5, 10],
                                           lod_level=0,
                                           name="mul.x",
                                           optimize_attr=optimizer_attr)
            mul_y = block.create_var(dtype="float32",
                                     shape=[10, 8],
                                     lod_level=0,
                                     name="mul.y")
            mul_out = block.create_var(dtype="float32",
                                       shape=[5, 8],
                                       lod_level=0,
                                       name="mul.out")
            mean_out = block.create_var(dtype="float32",
                                        shape=[1],
                                        lod_level=0,
                                        name="mean.out")
            block.append_op(type="mul",
                            inputs={
                                "X": mul_x,
                                "Y": mul_y
                            },
                            outputs={"Out": mul_out},
                            attrs={"x_num_col_dims": 1})
            block.append_op(type="mean",
                            inputs={"X": mul_out},
                            outputs={"Out": mean_out})
115 116 117 118 119 120 121
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            with framework.program_guard(program, init_program):
                p_g = sgd_optimizer.backward(mean_out)
                opts = sgd_optimizer.apply_gradients(p_g)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
122 123
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
124 125 126 127 128 129

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])


130
class TestMomentumOptimizer(unittest.TestCase):
131

132
    class MockMomentum(optimizer.MomentumOptimizer):
133

134 135 136 137 138 139
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

140
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
141
        init_program = framework.Program()
142 143
        program = framework.Program()
        block = program.global_block()
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
164
        learning_rate = 0.01
165 166 167 168 169 170 171 172 173
        momentum_optimizer = self.MockMomentum(learning_rate=learning_rate,
                                               momentum=0.2)
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
F
fengjiayi 已提交
174
        params_grads = append_backward(mean_out)
175 176
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
177 178
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
179
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
180
        sgd_op = opts[-1]
181
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
182
        self.assertFalse(sgd_op.attr('use_nesterov'))
183 184 185 186 187 188 189 190 191

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
192 193 194 195
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
196 197 198
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
199

200
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
201
        init_program = framework.Program()
202 203
        program = framework.Program()
        block = program.global_block()
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
231
        learning_rate = 0.01
232 233 234
        momentum_optimizer = self.MockMomentum(learning_rate=learning_rate,
                                               momentum=0.2,
                                               use_nesterov=True)
F
fengjiayi 已提交
235
        params_grads = append_backward(mean_out)
236 237
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
238 239
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
240
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
241
        sgd_op = opts[-1]
242
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
243
        self.assertTrue(sgd_op.attr('use_nesterov'))
244 245 246 247 248 249 250 251 252

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
253 254 255 256
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
257 258 259
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
260

261

262
class TestAdagradOptimizer(unittest.TestCase):
263

264
    class MockAdagrad(optimizer.AdagradOptimizer):
265

266 267 268 269 270 271 272
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
273
        init_program = framework.Program()
274 275
        program = framework.Program()
        block = program.global_block()
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
303
        learning_rate = 0.01
304 305
        adagrad_optimizer = self.MockAdagrad(learning_rate=learning_rate,
                                             epsilon=1.0e-6)
F
fengjiayi 已提交
306
        params_grads = append_backward(mean_out)
307 308
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
309 310
        with framework.program_guard(program, init_program):
            opts = adagrad_optimizer.apply_gradients(params_grads)
311 312
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adagrad"])
313

314
        # Check accumulators
315 316 317 318 319 320 321
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
322 323
        # Check init_program
        init_ops = init_program.global_block().ops
Z
zhongpu 已提交
324
        self.assertEqual(len(init_ops), 2)
Q
Qiao Longfei 已提交
325
        self.assertEqual(init_ops[1].type, "fill_constant")
326 327 328
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
329

330

331
class TestAdamOptimizer(unittest.TestCase):
332

333
    class MockAdam(optimizer.AdamOptimizer):
334

335 336 337 338 339 340 341 342 343 344
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
345
        init_program = framework.Program()
346 347
        program = framework.Program()
        block = program.global_block()
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
375
        learning_rate = 0.01
376 377 378
        adam_optimizer = self.MockAdam(learning_rate=learning_rate,
                                       beta1=0.9,
                                       beta2=0.999)
F
fengjiayi 已提交
379
        params_grads = append_backward(mean_out)
380 381
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
382 383
        with framework.program_guard(program, init_program):
            opts = adam_optimizer.apply_gradients(params_grads)
A
Aurelius84 已提交
384 385
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adam"])
386 387 388

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
Q
qiaolongfei 已提交
389
        self.assertEqual(len(accumulators), 4)
390 391 392 393 394 395 396 397 398
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
399 400 401
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
402 403
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
404

405

406
class TestAdamaxOptimizer(unittest.TestCase):
407

408
    class MockAdamax(optimizer.AdamaxOptimizer):
409

410 411 412 413 414 415 416 417 418 419
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
420
        init_program = framework.Program()
421 422
        program = framework.Program()
        block = program.global_block()
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
450
        learning_rate = 0.01
451 452 453
        adamax_optimizer = self.MockAdamax(learning_rate=learning_rate,
                                           beta1=0.9,
                                           beta2=0.999)
F
fengjiayi 已提交
454
        params_grads = append_backward(mean_out)
455 456
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
457 458
        with framework.program_guard(program, init_program):
            opts = adamax_optimizer.apply_gradients(params_grads)
459 460
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts], ["scale", "adamax", "scale"])
461 462 463

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
Q
qiaolongfei 已提交
464
        self.assertEqual(len(accumulators), 3)
465 466 467 468 469 470 471 472 473
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
474 475 476
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
477 478
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
479

480

481
class TestDpsgdOptimizer(unittest.TestCase):
482

483
    def test_dpsgd_optimizer(self):
484

485 486 487 488
        def check_dpsgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
            mul_x = block.create_parameter(dtype="float32",
                                           shape=[5, 10],
                                           lod_level=0,
                                           name="mul.x",
                                           optimize_attr=optimizer_attr)
            mul_y = block.create_var(dtype="float32",
                                     shape=[10, 8],
                                     lod_level=0,
                                     name="mul.y")
            mul_out = block.create_var(dtype="float32",
                                       shape=[5, 8],
                                       lod_level=0,
                                       name="mul.out")
            block.append_op(type="mul",
                            inputs={
                                "X": mul_x,
                                "Y": mul_y
                            },
                            outputs={"Out": mul_out},
                            attrs={"x_num_col_dims": 1})
            mean_out = block.create_var(dtype="float32",
                                        shape=[1],
                                        lod_level=0,
                                        name="mean.out")
            block.append_op(type="mean",
                            inputs={"X": mul_out},
                            outputs={"Out": mean_out})
            dpsgd_optimizer = optimizer.DpsgdOptimizer(learning_rate=0.01,
                                                       clip=100.0,
                                                       batch_size=16.0,
                                                       sigma=0.0)
520 521 522 523 524 525 526 527 528 529 530 531 532
            opts, _ = dpsgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_dpsgd_optimizer({
            'learning_rate': 1.1,
            'clip': 100.0,
            'batch_size': 16.0,
            'sigma': 4.0
        })
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "dpsgd"])


533
class TestDecayedAdagradOptimizer(unittest.TestCase):
534

535
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
536

537 538 539 540 541 542 543 544 545 546
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
574 575 576
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
F
fengjiayi 已提交
577
        params_grads = append_backward(mean_out)
578 579
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
580 581
        with framework.program_guard(program, init_program):
            opts = decayed_adagrad_optimizer.apply_gradients(params_grads)
582 583
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "decayed_adagrad"])
584 585 586 587 588 589 590 591 592 593 594 595 596 597

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
            decayed_adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
598 599 600
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
601 602


Q
qiaolongfei 已提交
603
class TestFtrlOptimizer(unittest.TestCase):
604

Q
qiaolongfei 已提交
605
    class MockFtrl(optimizer.FtrlOptimizer):
606

Q
qiaolongfei 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619
        def get_accumulators(self):
            return self._accumulators

        def get_squared_str(self):
            return self._squared_acc_str

        def get_linear_str(self):
            return self._linear_acc_str

    def test_ftrl_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
qiaolongfei 已提交
647
        learning_rate = 0.01
648 649 650 651
        ftrl_optimizer = self.MockFtrl(learning_rate=learning_rate,
                                       l1=0.0,
                                       l2=0.0,
                                       lr_power=-0.5)
Q
qiaolongfei 已提交
652 653 654
        params_grads = append_backward(mean_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
655 656
        with framework.program_guard(program, init_program):
            opts = ftrl_optimizer.apply_gradients(params_grads)
657 658
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "ftrl"])
Q
qiaolongfei 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

        # Check accumulators
        accumulators = ftrl_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators)
        self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators)
        squared_acc = accumulators[ftrl_optimizer.get_squared_str()]
        linear_acc = accumulators[ftrl_optimizer.get_linear_str()]
        self.assertEqual(len(squared_acc), 1)
        self.assertEqual(len(linear_acc), 1)
        self.assertTrue(mul_x.name in squared_acc)
        self.assertTrue(mul_x.name in linear_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 3)
675 676
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
qiaolongfei 已提交
677 678


M
mapingshuo 已提交
679
class TestLookaheadOptimizer(unittest.TestCase):
680

M
mapingshuo 已提交
681 682 683 684 685
    def test_lookahead_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        init_block = init_program.global_block()
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        init_mul_x = init_block.create_parameter(dtype="float32",
                                                 shape=[5, 10],
                                                 lod_level=0,
                                                 name="mul.x")
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")

        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
M
mapingshuo 已提交
718 719 720 721 722

        sgd = optimizer.SGD(learning_rate=0.01)
        lookahead = optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5)
        with framework.program_guard(program, init_program):
            opts, _ = lookahead.minimize(mean_out)
723 724
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
M
mapingshuo 已提交
725 726


M
mapingshuo 已提交
727
class TestRecomputeOptimizer(unittest.TestCase):
728

729
    def net(self, return_input=False, with_dropout=False, with_seed=False):
M
mapingshuo 已提交
730 731
        program = framework.Program()
        block = program.global_block()
732 733 734 735 736 737 738 739 740 741 742 743
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x")
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
744 745

        if with_dropout is True:
746 747 748 749 750 751 752 753
            mul_out_drop = block.create_var(dtype="float32",
                                            shape=[5, 8],
                                            lod_level=0,
                                            name="mul.out.dropout")
            mul_out_mask = block.create_var(dtype="uint8",
                                            shape=[5, 8],
                                            lod_level=0,
                                            name="mul.out.mask")
754
            if with_seed is True:
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
                seed_out = block.create_var(dtype="int32",
                                            shape=[1],
                                            name="seed.out")

        b1 = block.create_parameter(dtype="float32",
                                    shape=[5, 8],
                                    lod_level=0,
                                    name="b1")
        b1_out = block.create_var(dtype="float32",
                                  shape=[5, 8],
                                  lod_level=0,
                                  name="b1_out")
        b2 = block.create_parameter(dtype="float32",
                                    shape=[5, 8],
                                    lod_level=0,
                                    name="b2")
        b2_out = block.create_var(dtype="float32",
                                  shape=[5, 8],
                                  lod_level=0,
                                  name="b2_out")
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
786 787 788 789

        if with_dropout is True:
            dropout_inputs = {'X': [mul_out]}
            if with_seed is True:
790 791 792 793 794 795 796
                block.append_op(type='seed',
                                outputs={'Out': seed_out},
                                attrs={
                                    'deterministic': True,
                                    'rng_name': 'rng0',
                                    'force_cpu': True
                                })
797 798
                dropout_inputs = {'X': [mul_out], 'Seed': [seed_out]}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
            block.append_op(type='dropout',
                            inputs=dropout_inputs,
                            outputs={
                                'Out': [mul_out_drop],
                                'Mask': [mul_out_mask]
                            },
                            attrs={
                                'dropout_prob': 0.5,
                            })
            block.append_op(type="elementwise_add",
                            inputs={
                                "X": mul_out_drop,
                                "Y": b1
                            },
                            outputs={"Out": b1_out})
M
mapingshuo 已提交
814
        else:
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
            block.append_op(type="elementwise_add",
                            inputs={
                                "X": mul_out,
                                "Y": b1
                            },
                            outputs={"Out": b1_out})

        block.append_op(type="elementwise_add",
                        inputs={
                            "X": b1_out,
                            "Y": b2
                        },
                        outputs={"Out": b2_out})
        block.append_op(type="mean",
                        inputs={"X": b2_out},
                        outputs={"Out": mean_out})
M
mapingshuo 已提交
831

832 833
        if return_input == True:
            return mul_x, mul_out, b1_out, b2_out, mean_out
M
mapingshuo 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
        return mul_out, b1_out, b2_out, mean_out

    def test_no_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_one_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_str_checkpoints(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out.name])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
M
mapingshuo 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_multi_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

    def test_adjacent_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
    def test_out_of_order_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b2_out, mul_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

    def test_input_as_checkpoints(self):
        mul_x, mul_out, b1_out, b2_out, mean_out = self.net(return_input=True)
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_x, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 14)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "mul", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

M
mapingshuo 已提交
958 959 960 961 962 963
    def test_apply_gradients(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        # apply backward
964 965 966 967
        params_grads = recompute_optimizer.backward(mean_out,
                                                    startup_program=None,
                                                    parameter_list=None,
                                                    no_grad_set=None)
M
mapingshuo 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

        # apply gradient
        program = mean_out.block.program
        with framework.program_guard(program, None):
            optimize_ops = recompute_optimizer.apply_gradients(params_grads)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_load(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        try:
987 988
            state_dict = {}
            recompute_optimizer.load(state_dict)
M
mapingshuo 已提交
989 990 991
        except NotImplementedError as e:
            self.assertEqual(
                "load function is not supported by Recompute Optimizer for now",
992
                str(e))
M
mapingshuo 已提交
993

M
mapingshuo 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    def test_dropout(self):
        """
        If there are dropout layers in the forward nets, we should add a
        seed op
        """
        mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True)
        self.assertEqual(len(mean_out.block.ops), 5)
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "dropout", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad",
            "sgd", "sgd", "sgd"
        ])

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    def test_dropout_with_determinate_seed(self):
        mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True,
                                                     with_seed=True)
        self.assertEqual(len(mean_out.block.ops), 6)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean"
        ])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad",
            "sgd", "sgd", "sgd"
        ])

1038 1039 1040
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
1041 1042
        is the same as the original var.
        """
1043 1044 1045 1046

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
1047
                "y": np.random.randint(2, size=(100, 1)).astype('int64')
1048 1049 1050
            }

        def mlp(input_x, input_y):
1051 1052 1053
            drop_res = fluid.layers.dropout(input_x,
                                            dropout_prob=0.5,
                                            name="dropout_with_seed_cpu")
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            prediction = fluid.layers.fc(input=[drop_res],
                                         size=2,
                                         act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
1066 1067 1068
                input_x = fluid.layers.data(name="x",
                                            shape=[3],
                                            dtype='float32')
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
                drop_vec = exe.run(feed=feed_data,
                                   program=fluid.default_main_program(),
                                   fetch_list=[
                                       "dropout_with_seed_cpu.tmp_1",
                                       "dropout_with_seed_cpu.tmp_1.subprog_0"
                                   ])
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestRecomputeOptimizerCUDA(unittest.TestCase):
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
        is the same as the original var.
        """

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
1102
                "y": np.random.randint(2, size=(100, 1)).astype('int64')
1103 1104 1105
            }

        def mlp(input_x, input_y):
1106 1107 1108
            drop_res = fluid.layers.dropout(input_x,
                                            dropout_prob=0.5,
                                            name="dropout_with_seed_gpu")
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
            prediction = fluid.layers.fc(input=[drop_res],
                                         size=2,
                                         act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
1121 1122 1123
                input_x = fluid.layers.data(name="x",
                                            shape=[3],
                                            dtype='float32')
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
                drop_vec = exe.run(feed=feed_data,
                                   program=fluid.default_main_program(),
                                   fetch_list=[
                                       "dropout_with_seed_gpu.tmp_1",
                                       "dropout_with_seed_gpu.tmp_1.subprog_0"
                                   ])
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())

M
mapingshuo 已提交
1143

1144
class TestGradientMergeOptimizer(unittest.TestCase):
1145

1146 1147 1148
    def net(self):
        program = framework.Program()
        block = program.global_block()
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x")
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        b1 = block.create_parameter(dtype="float32",
                                    shape=[5, 8],
                                    lod_level=0,
                                    name="b1")
        b1_out = block.create_var(dtype="float32",
                                  shape=[5, 8],
                                  lod_level=0,
                                  name="b1_out")
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        block.append_op(type="elementwise_add",
                        inputs={
                            "X": mul_out,
                            "Y": b1
                        },
                        outputs={"Out": b1_out})
        block.append_op(type="mean",
                        inputs={"X": b1_out},
                        outputs={"Out": mean_out})
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        return mean_out

    def test_program_desc(self, ):
        cost = self.net()
        main_program = cost.block.program
        init_program = framework.Program()
        self.assertEqual(main_program.num_blocks, 1)
        self.assertEqual(len(cost.block.ops), 3)
        self.assertEqual([op.type for op in cost.block.ops],
                         ["mul", "elementwise_add", "mean"])

        opt = optimizer.SGD(learning_rate=1.0)
        opt = optimizer.GradientMergeOptimizer(opt, k_steps=4)
        with framework.program_guard(main_program, init_program):
            ops, params_grads = opt.minimize(cost)

1205
        self.assertEqual(main_program.num_blocks, 2)
1206 1207

        # main block
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        self.assertEqual(len(cost.block.ops), 13)
        self.assertEqual(
            [op.type for op in cost.block.ops],
            [
                'mul',
                'elementwise_add',
                'mean',
                'fill_constant',
                'mean_grad',
                'elementwise_add_grad',
                'mul_grad',
                'increment',  # step += 1
                'elementwise_mod',  # step %= k_steps
                'equal',  # cond_var == (step == 0)
                'elementwise_add',
                'elementwise_add',
                'conditional_block',
            ])
1226

1227 1228
        # optimize block
        self.assertEqual(len(main_program.block(1).ops), 6)
1229 1230 1231
        self.assertEqual(
            [op.type for op in main_program.block(1).ops],
            ['scale', 'scale', 'sgd', 'sgd', 'fill_constant', 'fill_constant'])
1232 1233


L
Leo Chen 已提交
1234 1235 1236 1237 1238 1239 1240
class TestOptimizerDtype(unittest.TestCase):
    '''
    The dtype of optimizer should be inferred by parameters, and the learning rate
    is cteated with the same dtype.
    '''

    def check_with_dtype(self, dtype):
1241

L
Leo Chen 已提交
1242
        class MyLayer(paddle.nn.Layer):
1243

L
Leo Chen 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
            def __init__(self, dtype):
                super(MyLayer, self).__init__()
                self._w = self.create_parameter([2, 3], dtype=dtype)
                self._b = self.create_parameter([2, 3], dtype=dtype)

            def forward(self, x):
                return x * self._w + self._b

        with paddle.fluid.dygraph.guard():
            model = MyLayer(dtype)
            x = paddle.rand([10, 2, 3], dtype=dtype)
            loss = model(x)
            adam = paddle.optimizer.Adam(parameters=model.parameters())
            loss.backward()
            adam.step()
            self.assertEqual(adam._dtype, convert_np_dtype_to_dtype_(dtype))

    def test_float64(self):
        self.check_with_dtype('float64')

    def test_float32(self):
        self.check_with_dtype('float32')

C
chentianyu03 已提交
1267 1268 1269 1270 1271
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_float64()
            self.test_float32()

L
Leo Chen 已提交
1272

1273 1274
class TestMasterWeightSaveForFP16(unittest.TestCase):
    '''
1275
    For Amp-O2, some optimizer(Momentum, Adam ...) will create master weights for parameters to improve the accuracy.
1276 1277 1278
    Master weights will be saved by optimizer::state_dict.
    '''

1279 1280 1281 1282 1283 1284
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1285 1286 1287 1288 1289
    def check_with_opt_state_dict(self, use_save_load=True):
        paddle.seed(100)
        numpy.random.seed(100)

        class SimpleNet(paddle.nn.Layer):
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
            def __init__(self, input_size, output_size):
                super(SimpleNet, self).__init__()
                self.linears = paddle.nn.LayerList([
                    paddle.nn.Linear(input_size, output_size) for i in range(1)
                ])

            def forward(self, x):
                for i, l in enumerate(self.linears):
                    x = self.linears[i](x)
                return x

        input_size = 2  # 设为较大的值
        output_size = 2  # 设为较大的值
        batch_size = 2  # batch_size 为8的倍数
        nums_batch = 10

        class RandomDataset(Dataset):
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
            def __init__(self, num_samples):
                self.num_samples = num_samples

            def __getitem__(self, idx):
                data = numpy.random.random([input_size]).astype('float16')
                label = numpy.random.random([output_size]).astype('float16')
                return data, label

            def __len__(self):
                return self.num_samples

        dataset = RandomDataset(nums_batch * batch_size)
1321 1322 1323 1324 1325
        loader = paddle.io.DataLoader(dataset,
                                      batch_size=batch_size,
                                      shuffle=False,
                                      drop_last=True,
                                      num_workers=0)
1326 1327 1328

        mse = paddle.nn.MSELoss()
        model = SimpleNet(input_size, output_size)  # 定义模型
1329 1330 1331
        optimizer = paddle.optimizer.Momentum(learning_rate=0.0001,
                                              parameters=model.parameters(),
                                              multi_precision=True)  # 定义优化器
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
        model = paddle.amp.decorate(models=model, level='O2')

        for i, (data, label) in enumerate(loader):
            with paddle.amp.auto_cast(level='O2'):
                output = model(data)
                loss = mse(output, label)
            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.step(optimizer)
            scaler.update()
            optimizer.clear_grad(set_to_zero=False)

            if use_save_load and i == 5:
1346 1347 1348 1349 1350 1351
                model_path = os.path.join(self.temp_dir.name, "model.pdparams")
                optimizer_path = os.path.join(self.temp_dir.name, "opt.pdopt")
                paddle.save(model.state_dict(), model_path)
                paddle.save(optimizer.state_dict(), optimizer_path)
                model.set_state_dict(paddle.load(model_path))
                optimizer.set_state_dict(paddle.load(optimizer_path))
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

        return loss.numpy()

    def test_with_state_dict(self):
        if core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                out_use_state_dict = self.check_with_opt_state_dict(
                    use_save_load=True)
                out_no_state_dict = self.check_with_opt_state_dict(
                    use_save_load=False)
1362
            np.testing.assert_array_equal(out_use_state_dict, out_no_state_dict)
1363 1364


Q
Qiao Longfei 已提交
1365
if __name__ == '__main__':
1366
    paddle.enable_static()
Q
Qiao Longfei 已提交
1367
    unittest.main()