test_optimizer.py 46.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17 18
import unittest

19
import paddle.fluid as fluid
20 21
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
22
import paddle.fluid.core as core
M
mapingshuo 已提交
23
import paddle.compat as cpt
24
import numpy as np
25
from paddle.fluid.backward import append_backward
L
Leo Chen 已提交
26 27
from paddle.fluid.framework import Program, program_guard, convert_np_dtype_to_dtype_
import paddle
28
paddle.enable_static()
Q
Qiao Longfei 已提交
29 30 31 32


class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
Q
qiaolongfei 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
62 63
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
Q
Qiao Longfei 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])

Q
Qiao Longfei 已提交
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
class TestOptimizerBackwardApplygrad(unittest.TestCase):
    def test_sgd_optimizer(self):
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            with framework.program_guard(program, init_program):
                p_g = sgd_optimizer.backward(mean_out)
                opts = sgd_optimizer.apply_gradients(p_g)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
103 104
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
105 106 107 108 109 110

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])


111 112 113 114 115 116 117 118
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

119
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
120
        init_program = framework.Program()
121 122 123
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
124 125 126 127 128
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
129 130 131 132 133 134 135 136 137 138
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
139 140 141
        learning_rate = 0.01
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2)
142 143 144 145
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
146
        params_grads = append_backward(mean_out)
147 148
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
149 150
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
151
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
152
        sgd_op = opts[-1]
153
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
154
        self.assertFalse(sgd_op.attr('use_nesterov'))
155 156 157 158 159 160 161 162 163

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
164 165 166 167
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
168 169 170
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
171

172
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
173
        init_program = framework.Program()
174 175 176
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
177 178 179 180 181
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
182 183 184 185 186 187 188 189 190 191
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
192 193 194 195
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
196
        learning_rate = 0.01
197
        momentum_optimizer = self.MockMomentum(
Q
Qiao Longfei 已提交
198
            learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
F
fengjiayi 已提交
199
        params_grads = append_backward(mean_out)
200 201
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
202 203
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
204
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
205
        sgd_op = opts[-1]
206
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
207
        self.assertTrue(sgd_op.attr('use_nesterov'))
208 209 210 211 212 213 214 215 216

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
217 218 219 220
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
221 222 223
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
224

225

226 227 228 229 230 231 232 233 234
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
235
        init_program = framework.Program()
236 237 238
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
239 240 241 242 243
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
244 245 246 247 248 249 250 251 252 253
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
254 255 256 257
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
258 259 260
        learning_rate = 0.01
        adagrad_optimizer = self.MockAdagrad(
            learning_rate=learning_rate, epsilon=1.0e-6)
F
fengjiayi 已提交
261
        params_grads = append_backward(mean_out)
262 263
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
264 265
        with framework.program_guard(program, init_program):
            opts = adagrad_optimizer.apply_gradients(params_grads)
266 267
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adagrad"])
268

269
        # Check accumulators
270 271 272 273 274 275 276
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
277 278
        # Check init_program
        init_ops = init_program.global_block().ops
Z
zhongpu 已提交
279
        self.assertEqual(len(init_ops), 2)
Q
Qiao Longfei 已提交
280
        self.assertEqual(init_ops[1].type, "fill_constant")
281 282 283
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
284

285

286 287 288 289 290 291 292 293 294 295 296 297
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
298
        init_program = framework.Program()
299 300 301
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
302 303 304 305 306
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
307 308 309 310 311 312 313 314 315 316
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
317 318 319 320
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
321
        learning_rate = 0.01
322
        adam_optimizer = self.MockAdam(
Q
Qiao Longfei 已提交
323
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
324
        params_grads = append_backward(mean_out)
325 326
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
327 328
        with framework.program_guard(program, init_program):
            opts = adam_optimizer.apply_gradients(params_grads)
A
Aurelius84 已提交
329 330
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adam"])
331 332 333

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
Q
qiaolongfei 已提交
334
        self.assertEqual(len(accumulators), 4)
335 336 337 338 339 340 341 342 343
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
344 345 346
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
347 348
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
349

350

351 352 353 354 355 356 357 358 359 360 361 362
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
363
        init_program = framework.Program()
364 365 366
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
367 368 369 370 371
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
372 373 374 375 376 377 378 379 380 381
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
382 383 384 385
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
386
        learning_rate = 0.01
387
        adamax_optimizer = self.MockAdamax(
Q
Qiao Longfei 已提交
388
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
389
        params_grads = append_backward(mean_out)
390 391
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
392 393
        with framework.program_guard(program, init_program):
            opts = adamax_optimizer.apply_gradients(params_grads)
394 395
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts], ["scale", "adamax", "scale"])
396 397 398

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
Q
qiaolongfei 已提交
399
        self.assertEqual(len(accumulators), 3)
400 401 402 403 404 405 406 407 408
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
409 410 411
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
412 413
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
414

415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
class TestDpsgdOptimizer(unittest.TestCase):
    def test_dpsgd_optimizer(self):
        def check_dpsgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            dpsgd_optimizer = optimizer.DpsgdOptimizer(
                learning_rate=0.01, clip=100.0, batch_size=16.0, sigma=0.0)
            opts, _ = dpsgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_dpsgd_optimizer({
            'learning_rate': 1.1,
            'clip': 100.0,
            'batch_size': 16.0,
            'sigma': 4.0
        })
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "dpsgd"])


457 458 459 460 461 462 463 464 465 466 467 468 469
class TestDecayedAdagradOptimizer(unittest.TestCase):
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
470 471 472 473 474
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
475 476 477 478 479 480 481 482 483 484
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
485 486 487 488
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
489 490 491
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
F
fengjiayi 已提交
492
        params_grads = append_backward(mean_out)
493 494
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
495 496
        with framework.program_guard(program, init_program):
            opts = decayed_adagrad_optimizer.apply_gradients(params_grads)
497 498
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "decayed_adagrad"])
499 500 501 502 503 504 505 506 507 508 509 510 511 512

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
            decayed_adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
513 514 515
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
516 517


Q
qiaolongfei 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
class TestFtrlOptimizer(unittest.TestCase):
    class MockFtrl(optimizer.FtrlOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_squared_str(self):
            return self._squared_acc_str

        def get_linear_str(self):
            return self._linear_acc_str

    def test_ftrl_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
        learning_rate = 0.01
        ftrl_optimizer = self.MockFtrl(
            learning_rate=learning_rate, l1=0.0, l2=0.0, lr_power=-0.5)
        params_grads = append_backward(mean_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
559 560
        with framework.program_guard(program, init_program):
            opts = ftrl_optimizer.apply_gradients(params_grads)
561 562
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "ftrl"])
Q
qiaolongfei 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

        # Check accumulators
        accumulators = ftrl_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators)
        self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators)
        squared_acc = accumulators[ftrl_optimizer.get_squared_str()]
        linear_acc = accumulators[ftrl_optimizer.get_linear_str()]
        self.assertEqual(len(squared_acc), 1)
        self.assertEqual(len(linear_acc), 1)
        self.assertTrue(mul_x.name in squared_acc)
        self.assertTrue(mul_x.name in linear_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 3)
579 580
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
qiaolongfei 已提交
581 582


M
mapingshuo 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
class TestLookaheadOptimizer(unittest.TestCase):
    def test_lookahead_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        init_block = init_program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
        init_mul_x = init_block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")

        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})

        sgd = optimizer.SGD(learning_rate=0.01)
        lookahead = optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5)
        with framework.program_guard(program, init_program):
            opts, _ = lookahead.minimize(mean_out)
617 618
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
M
mapingshuo 已提交
619 620


M
mapingshuo 已提交
621
class TestRecomputeOptimizer(unittest.TestCase):
622
    def net(self, return_input=False, with_dropout=False, with_seed=False):
M
mapingshuo 已提交
623 624 625 626 627 628 629 630
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
631 632

        if with_dropout is True:
M
mapingshuo 已提交
633 634 635 636 637 638 639
            mul_out_drop = block.create_var(
                dtype="float32",
                shape=[5, 8],
                lod_level=0,
                name="mul.out.dropout")
            mul_out_mask = block.create_var(
                dtype="uint8", shape=[5, 8], lod_level=0, name="mul.out.mask")
640 641 642 643
            if with_seed is True:
                seed_out = block.create_var(
                    dtype="int32", shape=[1], name="seed.out")

M
mapingshuo 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
        b1 = block.create_parameter(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1")
        b1_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1_out")
        b2 = block.create_parameter(
            dtype="float32", shape=[5, 8], lod_level=0, name="b2")
        b2_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="b2_out")
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
660 661 662 663 664 665 666 667 668 669 670 671 672 673

        if with_dropout is True:
            dropout_inputs = {'X': [mul_out]}
            if with_seed is True:
                block.append_op(
                    type='seed',
                    outputs={'Out': seed_out},
                    attrs={
                        'deterministic': True,
                        'rng_name': 'rng0',
                        'force_cpu': True
                    })
                dropout_inputs = {'X': [mul_out], 'Seed': [seed_out]}

M
mapingshuo 已提交
674 675
            block.append_op(
                type='dropout',
676
                inputs=dropout_inputs,
M
mapingshuo 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690
                outputs={'Out': [mul_out_drop],
                         'Mask': [mul_out_mask]},
                attrs={'dropout_prob': 0.5, })
            block.append_op(
                type="elementwise_add",
                inputs={"X": mul_out_drop,
                        "Y": b1},
                outputs={"Out": b1_out})
        else:
            block.append_op(
                type="elementwise_add",
                inputs={"X": mul_out,
                        "Y": b1},
                outputs={"Out": b1_out})
691

M
mapingshuo 已提交
692 693 694 695 696 697 698 699
        block.append_op(
            type="elementwise_add",
            inputs={"X": b1_out,
                    "Y": b2},
            outputs={"Out": b2_out})
        block.append_op(
            type="mean", inputs={"X": b2_out}, outputs={"Out": mean_out})

700 701
        if return_input == True:
            return mul_x, mul_out, b1_out, b2_out, mean_out
M
mapingshuo 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
        return mul_out, b1_out, b2_out, mean_out

    def test_no_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_one_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_str_checkpoints(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out.name])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
M
mapingshuo 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_multi_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

    def test_adjacent_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    def test_out_of_order_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b2_out, mul_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

    def test_input_as_checkpoints(self):
        mul_x, mul_out, b1_out, b2_out, mean_out = self.net(return_input=True)
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_x, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 14)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "mul", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

M
mapingshuo 已提交
826 827 828 829 830 831 832 833 834 835
    def test_apply_gradients(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        # apply backward
        params_grads = recompute_optimizer.backward(
            mean_out,
            startup_program=None,
            parameter_list=None,
836
            no_grad_set=None)
M
mapingshuo 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

        # apply gradient
        program = mean_out.block.program
        with framework.program_guard(program, None):
            optimize_ops = recompute_optimizer.apply_gradients(params_grads)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_load(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        try:
856 857
            state_dict = {}
            recompute_optimizer.load(state_dict)
M
mapingshuo 已提交
858 859 860 861 862
        except NotImplementedError as e:
            self.assertEqual(
                "load function is not supported by Recompute Optimizer for now",
                cpt.get_exception_message(e))

M
mapingshuo 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    def test_dropout(self):
        """
        If there are dropout layers in the forward nets, we should add a
        seed op
        """
        mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True)
        self.assertEqual(len(mean_out.block.ops), 5)
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "dropout", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad",
            "sgd", "sgd", "sgd"
        ])

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
    def test_dropout_with_determinate_seed(self):
        mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True,
                                                     with_seed=True)
        self.assertEqual(len(mean_out.block.ops), 6)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean"
        ])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad",
            "sgd", "sgd", "sgd"
        ])

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
	    is the same as the original var.
	    """

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
                "y": np.random.randint(
                    2, size=(100, 1)).astype('int64')
            }

        def mlp(input_x, input_y):
            drop_res = fluid.layers.dropout(
                input_x, dropout_prob=0.5, name="dropout_with_seed_cpu")
            prediction = fluid.layers.fc(input=[drop_res],
                                         size=2,
                                         act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
                input_x = fluid.layers.data(
                    name="x", shape=[3], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
                drop_vec = exe.run(feed=feed_data,
                                   program=fluid.default_main_program(),
                                   fetch_list=[
                                       "dropout_with_seed_cpu.tmp_1",
                                       "dropout_with_seed_cpu.tmp_1.subprog_0"
                                   ])
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestRecomputeOptimizerCUDA(unittest.TestCase):
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
        is the same as the original var.
        """

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
                "y": np.random.randint(
                    2, size=(100, 1)).astype('int64')
            }

        def mlp(input_x, input_y):
            drop_res = fluid.layers.dropout(
                input_x, dropout_prob=0.5, name="dropout_with_seed_gpu")
            prediction = fluid.layers.fc(input=[drop_res],
                                         size=2,
                                         act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
                input_x = fluid.layers.data(
                    name="x", shape=[3], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
                drop_vec = exe.run(feed=feed_data,
                                   program=fluid.default_main_program(),
                                   fetch_list=[
                                       "dropout_with_seed_gpu.tmp_1",
                                       "dropout_with_seed_gpu.tmp_1.subprog_0"
                                   ])
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())

M
mapingshuo 已提交
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
class TestGradientMergeOptimizer(unittest.TestCase):
    def net(self):
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        b1 = block.create_parameter(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1")
        b1_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1_out")
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        block.append_op(
            type="elementwise_add",
            inputs={"X": mul_out,
                    "Y": b1},
            outputs={"Out": b1_out})
        block.append_op(
            type="mean", inputs={"X": b1_out}, outputs={"Out": mean_out})
        return mean_out

    def test_program_desc(self, ):
        cost = self.net()
        main_program = cost.block.program
        init_program = framework.Program()
        self.assertEqual(main_program.num_blocks, 1)
        self.assertEqual(len(cost.block.ops), 3)
        self.assertEqual([op.type for op in cost.block.ops],
                         ["mul", "elementwise_add", "mean"])

        opt = optimizer.SGD(learning_rate=1.0)
        opt = optimizer.GradientMergeOptimizer(opt, k_steps=4)
        with framework.program_guard(main_program, init_program):
            ops, params_grads = opt.minimize(cost)

1055
        self.assertEqual(main_program.num_blocks, 2)
1056 1057

        # main block
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        self.assertEqual(len(cost.block.ops), 13)
        self.assertEqual(
            [op.type for op in cost.block.ops],
            [
                'mul',
                'elementwise_add',
                'mean',
                'fill_constant',
                'mean_grad',
                'elementwise_add_grad',
                'mul_grad',
                'increment',  # step += 1
                'elementwise_mod',  # step %= k_steps
                'equal',  # cond_var == (step == 0)
                'elementwise_add',
                'elementwise_add',
                'conditional_block',
            ])
1076

1077 1078
        # optimize block
        self.assertEqual(len(main_program.block(1).ops), 6)
1079
        self.assertEqual([op.type for op in main_program.block(1).ops], [
1080
            'scale', 'scale', 'sgd', 'sgd', 'fill_constant', 'fill_constant'
1081 1082 1083
        ])


L
Leo Chen 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
class TestOptimizerDtype(unittest.TestCase):
    '''
    The dtype of optimizer should be inferred by parameters, and the learning rate
    is cteated with the same dtype.
    '''

    def check_with_dtype(self, dtype):
        class MyLayer(paddle.nn.Layer):
            def __init__(self, dtype):
                super(MyLayer, self).__init__()
                self._w = self.create_parameter([2, 3], dtype=dtype)
                self._b = self.create_parameter([2, 3], dtype=dtype)

            def forward(self, x):
                return x * self._w + self._b

        with paddle.fluid.dygraph.guard():
            model = MyLayer(dtype)
            x = paddle.rand([10, 2, 3], dtype=dtype)
            loss = model(x)
            adam = paddle.optimizer.Adam(parameters=model.parameters())
            loss.backward()
            adam.step()
            self.assertEqual(adam._dtype, convert_np_dtype_to_dtype_(dtype))

    def test_float64(self):
        self.check_with_dtype('float64')

    def test_float32(self):
        self.check_with_dtype('float32')


Q
Qiao Longfei 已提交
1116 1117
if __name__ == '__main__':
    unittest.main()