print_op.cc 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <algorithm>
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
17
#include "paddle/fluid/framework/var_type.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
21
using framework::GradVarName;
Y
Yan Chunwei 已提交
22 23 24

#define CLOG std::cout

25 26 27
const char kForward[] = "FORWARD";
const char kBackward[] = "BACKWARD";
const char kBoth[] = "BOTH";
Y
yangyaming 已提交
28

C
chengduo 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41
class LogGuard {
 public:
  inline LogGuard() { LogMutex().lock(); }

  inline ~LogGuard() { LogMutex().unlock(); }

 private:
  static std::mutex &LogMutex() {
    static std::mutex mtx;
    return mtx;
  }
};

Y
Yan Chunwei 已提交
42 43 44 45
struct Formater {
  std::string message;
  std::string name;
  std::vector<int> dims;
46
  std::type_index dtype{typeid(const char)};
Y
Yan Chunwei 已提交
47 48
  framework::LoD lod;
  int summarize;
Y
Yu Yang 已提交
49
  void *data{nullptr};
C
chengduo 已提交
50 51
  platform::Place place;
  std::stringstream logs;
Y
Yan Chunwei 已提交
52 53 54

  void operator()(size_t size) {
    PrintMessage();
C
chengduo 已提交
55
    PrintPlaceInfo();
Y
Yan Chunwei 已提交
56 57 58 59 60
    PrintName();
    PrintDims();
    PrintDtype();
    PrintLod();
    PrintData(size);
C
chengduo 已提交
61 62
    LogGuard guard;
    CLOG << logs.str();
Y
Yan Chunwei 已提交
63 64 65
  }

 private:
C
chengduo 已提交
66 67
  void PrintPlaceInfo() { logs << "The place is:" << place << std::endl; }
  void PrintMessage() { logs << std::time(nullptr) << "\t" << message << "\t"; }
Y
Yan Chunwei 已提交
68 69
  void PrintName() {
    if (!name.empty()) {
C
chengduo 已提交
70
      logs << "Tensor[" << name << "]" << std::endl;
Y
Yan Chunwei 已提交
71 72 73 74
    }
  }
  void PrintDims() {
    if (!dims.empty()) {
C
chengduo 已提交
75
      logs << "\tshape: [";
Y
Yan Chunwei 已提交
76
      for (auto i : dims) {
C
chengduo 已提交
77
        logs << i << ",";
Y
Yan Chunwei 已提交
78
      }
C
chengduo 已提交
79
      logs << "]" << std::endl;
Y
Yan Chunwei 已提交
80 81 82
    }
  }
  void PrintDtype() {
S
sneaxiy 已提交
83
    if (!framework::IsType<const char>(dtype)) {
C
chengduo 已提交
84
      logs << "\tdtype: " << dtype.name() << std::endl;
Y
Yan Chunwei 已提交
85 86 87 88
    }
  }
  void PrintLod() {
    if (!lod.empty()) {
C
chengduo 已提交
89
      logs << "\tLoD: [";
Y
Yan Chunwei 已提交
90
      for (auto level : lod) {
C
chengduo 已提交
91
        logs << "[ ";
Y
Yan Chunwei 已提交
92
        for (auto i : level) {
C
chengduo 已提交
93
          logs << i << ",";
Y
Yan Chunwei 已提交
94
        }
C
chengduo 已提交
95
        logs << " ]";
Y
Yan Chunwei 已提交
96
      }
C
chengduo 已提交
97
      logs << "]" << std::endl;
Y
Yan Chunwei 已提交
98 99 100 101 102 103
    }
  }

  void PrintData(size_t size) {
    PADDLE_ENFORCE_NOT_NULL(data);
    // print float
S
sneaxiy 已提交
104
    if (framework::IsType<const float>(dtype)) {
Y
Yan Chunwei 已提交
105
      Display<float>(size);
S
sneaxiy 已提交
106
    } else if (framework::IsType<const double>(dtype)) {
Y
Yan Chunwei 已提交
107
      Display<double>(size);
S
sneaxiy 已提交
108
    } else if (framework::IsType<const int>(dtype)) {
Y
Yan Chunwei 已提交
109
      Display<int>(size);
S
sneaxiy 已提交
110
    } else if (framework::IsType<const int64_t>(dtype)) {
Y
Yan Chunwei 已提交
111
      Display<int64_t>(size);
S
sneaxiy 已提交
112
    } else if (framework::IsType<const bool>(dtype)) {
113 114
      Display<bool>(size);
    } else {
C
chengduo 已提交
115
      logs << "\tdata: unprintable type: " << dtype.name() << std::endl;
Y
Yan Chunwei 已提交
116 117 118 119 120
    }
  }

  template <typename T>
  void Display(size_t size) {
Y
Yu Yang 已提交
121
    auto *d = reinterpret_cast<T *>(data);
C
chengduo 已提交
122
    logs << "\tdata: ";
Y
Yan Chunwei 已提交
123 124 125
    if (summarize != -1) {
      summarize = std::min(size, (size_t)summarize);
      for (int i = 0; i < summarize; i++) {
C
chengduo 已提交
126
        logs << d[i] << ",";
Y
Yan Chunwei 已提交
127 128 129
      }
    } else {
      for (size_t i = 0; i < size; i++) {
C
chengduo 已提交
130
        logs << d[i] << ",";
Y
Yan Chunwei 已提交
131 132
      }
    }
C
chengduo 已提交
133
    logs << std::endl;
Y
Yan Chunwei 已提交
134 135 136 137 138 139
  }
};

// TODO(ChunweiYan) there should be some other printers for TensorArray
class TensorPrintOp : public framework::OperatorBase {
 public:
Y
Yu Yang 已提交
140 141 142 143
  TensorPrintOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
Y
Yan Chunwei 已提交
144 145
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
146
  TensorPrintOp(const TensorPrintOp &o)
Y
Yan Chunwei 已提交
147
      : framework::OperatorBase(
Y
Yu Yang 已提交
148
            static_cast<const framework::OperatorBase &>(o)) {
Y
yangyaming 已提交
149
    PADDLE_THROW("Not implemented.");
Y
Yan Chunwei 已提交
150 151
  }

152
 private:
Y
Yu Yang 已提交
153 154 155
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    const framework::Variable *in_var_ptr = nullptr;
Y
yangyaming 已提交
156 157
    std::string printed_var_name = "";

Y
Yu Yang 已提交
158 159
    in_var_ptr = scope.FindVar(Input("In"));
    printed_var_name = Inputs("In").front();
Y
yangyaming 已提交
160 161 162

    PADDLE_ENFORCE_NOT_NULL(in_var_ptr);

Y
Yu Yang 已提交
163
    auto &in_tensor = in_var_ptr->Get<framework::LoDTensor>();
Y
yangyaming 已提交
164 165

    std::string print_phase = Attr<std::string>("print_phase");
Y
Yu Yang 已提交
166 167 168 169
    bool is_forward = Attr<bool>("is_forward");

    if ((is_forward && print_phase == kBackward) ||
        (!is_forward && print_phase == kForward)) {
Y
yangyaming 已提交
170 171 172
      return;
    }

Y
Yan Chunwei 已提交
173 174 175
    int first_n = Attr<int>("first_n");
    if (first_n > 0 && ++times_ > first_n) return;

Y
yangyaming 已提交
176 177 178
    framework::LoDTensor printed_tensor;
    printed_tensor.set_lod(in_tensor.lod());
    printed_tensor.Resize(in_tensor.dims());
Y
Yan Chunwei 已提交
179

Y
yangyaming 已提交
180 181 182 183 184
    if (platform::is_cpu_place(in_tensor.place())) {
      printed_tensor.ShareDataWith(in_tensor);
    } else {
      // copy data to cpu to print
      platform::CPUPlace place;
Y
Yi Wang 已提交
185
      framework::TensorCopy(in_tensor, place, &printed_tensor);
Y
yangyaming 已提交
186
    }
Y
Yan Chunwei 已提交
187 188

    Formater formater;
C
chengduo 已提交
189
    formater.place = place;
190
    formater.message = Attr<std::string>("message");
Y
Yan Chunwei 已提交
191
    if (Attr<bool>("print_tensor_name")) {
Y
yangyaming 已提交
192
      formater.name = printed_var_name;
Y
Yan Chunwei 已提交
193 194
    }
    if (Attr<bool>("print_tensor_type")) {
Y
Yu Yang 已提交
195
      formater.dtype = framework::ToTypeIndex(printed_tensor.type());
Y
Yan Chunwei 已提交
196 197
    }
    if (Attr<bool>("print_tensor_shape")) {
Y
Yu Yang 已提交
198
      auto &dims = printed_tensor.dims();
Y
yangyaming 已提交
199 200
      formater.dims.resize(dims.size());
      for (int i = 0; i < dims.size(); ++i) formater.dims[i] = dims[i];
Y
Yan Chunwei 已提交
201 202
    }
    if (Attr<bool>("print_tensor_lod")) {
Y
yangyaming 已提交
203
      formater.lod = printed_tensor.lod();
Y
Yan Chunwei 已提交
204 205
    }
    formater.summarize = Attr<int>("summarize");
Y
Yu Yang 已提交
206
    formater.data = reinterpret_cast<void *>(printed_tensor.data<void>());
Y
yangyaming 已提交
207
    formater(printed_tensor.numel());
Y
Yan Chunwei 已提交
208 209 210 211 212 213 214 215
  }

 private:
  mutable int times_{0};
};

class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
216
  void Make() override {
Y
yangyaming 已提交
217
    AddInput("In", "Input tensor to be displayed.");
Y
Yan Chunwei 已提交
218 219
    AddAttr<int>("first_n", "Only log `first_n` number of times.");
    AddAttr<std::string>("message", "A string message to print as a prefix.");
Y
yangyaming 已提交
220
    AddAttr<int>("summarize", "Number of elements printed.");
Y
Yan Chunwei 已提交
221 222 223 224
    AddAttr<bool>("print_tensor_name", "Whether to print the tensor name.");
    AddAttr<bool>("print_tensor_type", "Whether to print the tensor's dtype.");
    AddAttr<bool>("print_tensor_shape", "Whether to print the tensor's shape.");
    AddAttr<bool>("print_tensor_lod", "Whether to print the tensor's lod.");
Y
Yu Yang 已提交
225 226 227 228
    AddAttr<std::string>("print_phase",
                         "(string, default 'FORWARD') Which phase to display "
                         "including 'FORWARD' "
                         "'BACKWARD' and 'BOTH'.")
229 230 231
        .SetDefault(std::string(kBoth))
        .InEnum({std::string(kForward), std::string(kBackward),
                 std::string(kBoth)});
Y
Yu Yang 已提交
232
    AddAttr<bool>("is_forward", "Whether is forward or not").SetDefault(true);
Y
Yan Chunwei 已提交
233
    AddComment(R"DOC(
Y
yangyaming 已提交
234
Creates a print op that will print when a tensor is accessed.
Y
Yan Chunwei 已提交
235

Y
yangyaming 已提交
236 237 238
Wraps the tensor passed in so that whenever that a tensor is accessed,
the message `message` is printed, along with the current value of the
tensor `t`.)DOC");
Y
Yan Chunwei 已提交
239 240 241
  }
};

Y
yangyaming 已提交
242
class InferShapeForward : public framework::InferShapeBase {
Y
Yan Chunwei 已提交
243
 public:
Y
Yu Yang 已提交
244
  void operator()(framework::InferShapeContext *context) const override {
Y
yangyaming 已提交
245
    PADDLE_ENFORCE(context->HasInput("In"), "Input(In) should not be null.");
Y
Yan Chunwei 已提交
246 247 248
  }
};

Y
Yu Yang 已提交
249
class PrintOpGradientMaker : public framework::SingleGradOpDescMaker {
Y
yangyaming 已提交
250 251 252 253
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
Y
Yu Yang 已提交
254 255 256
    auto *op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType("print");
    op_desc_ptr->SetInput("In", InputGrad("In"));
Y
yangyaming 已提交
257
    op_desc_ptr->SetAttrMap(Attrs());
Y
Yu Yang 已提交
258
    op_desc_ptr->SetAttr("is_forward", false);
Y
yangyaming 已提交
259 260 261 262
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

Y
Yan Chunwei 已提交
263 264 265
}  // namespace operators
}  // namespace paddle

Y
yangyaming 已提交
266 267 268
namespace ops = paddle::operators;

REGISTER_OPERATOR(print, ops::TensorPrintOp, ops::PrintOpProtoAndCheckMaker,
Y
Yu Yang 已提交
269
                  ops::PrintOpGradientMaker, ops::InferShapeForward);