transforms.py 40.7 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

L
LielinJiang 已提交
28
from paddle.utils import try_import
L
LielinJiang 已提交
29 30 31 32 33 34 35 36 37
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

38
__all__ = []
L
LielinJiang 已提交
39 40


41 42 43 44 45
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
46 47
    elif F._is_tensor_image(img):
        return img.shape[1:][::-1]  # chw
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
79 80 81 82 83 84
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
85
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
86 87 88 89 90 91 92 93 94

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

95 96
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
97 98 99 100 101 102

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
103
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
104 105 106 107 108 109

    """

    def __init__(self, transforms):
        self.transforms = transforms

110
    def __call__(self, data):
L
LielinJiang 已提交
111 112
        for f in self.transforms:
            try:
113
                data = f(data)
L
LielinJiang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


130 131 132
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
133

134 135 136 137 138 139 140 141 142
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
165 166 167 168 169
    Examples:
    
        .. code-block:: python

            import numpy as np
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
235 236 237

    """

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
271
            outputs.extend(inputs[len(self.keys):])
272 273 274 275 276 277

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
278

279 280
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
281

282 283
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
284

285 286
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
287

288 289
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
290

291 292 293 294

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
295 296 297 298 299 300 301 302 303 304
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

    If input is a grayscale image (H x W), it will be converted to a image of shape (H x W x 1). 
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the 
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, 
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8. 
305 306 307 308

    In the other cases, tensors are returned without scaling.

    Args:
L
LielinJiang 已提交
309
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))

            transform = T.ToTensor()

            tensor = transform(fake_img)

    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
347 348 349 350 351 352 353 354
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
370 371 372 373 374 375

    Examples:
    
        .. code-block:: python

            import numpy as np
376
            from PIL import Image
377
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
378 379 380

            transform = Resize(size=224)

381
            fake_img = Image.fromarray((np.random.rand(100, 120, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
382 383

            fake_img = transform(fake_img)
384
            print(fake_img.size)
L
LielinJiang 已提交
385 386
    """

387 388
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
389 390 391 392 393
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

394
    def _apply_image(self, img):
L
LielinJiang 已提交
395 396 397
        return F.resize(img, self.size, self.interpolation)


398
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
399 400 401 402 403 404
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
405
        size (int|list|tuple): Target size of output image, with (height, width) shape.
406 407
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin 
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
408
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
424 425 426 427 428 429

    Examples:
    
        .. code-block:: python

            import numpy as np
430
            from PIL import Image
431
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
432 433 434

            transform = RandomResizedCrop(224)

435
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
436 437

            fake_img = transform(fake_img)
438 439
            print(fake_img.size)

L
LielinJiang 已提交
440 441 442
    """

    def __init__(self,
443
                 size,
L
LielinJiang 已提交
444 445
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
446 447 448 449 450
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
451
        else:
452
            self.size = size
L
LielinJiang 已提交
453 454 455 456 457 458
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

459 460
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
461 462 463 464 465 466 467 468 469 470 471
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
472 473 474
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
475 476 477 478 479 480 481 482 483

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
484 485
        else:
            # return whole image
L
LielinJiang 已提交
486 487
            w = width
            h = height
488 489 490
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
491

492 493
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
494

495
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
496 497 498
        return F.resize(cropped_img, self.size, self.interpolation)


499
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
500 501 502
    """Crops the given the input data at the center.

    Args:
503 504 505
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

L
LielinJiang 已提交
506 507 508 509 510
    Examples:
    
        .. code-block:: python

            import numpy as np
511
            from PIL import Image
512
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
513 514 515

            transform = CenterCrop(224)

516
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
517 518

            fake_img = transform(fake_img)
519
            print(fake_img.size)
L
LielinJiang 已提交
520 521
    """

522 523 524 525
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
526
        else:
527
            self.size = size
L
LielinJiang 已提交
528

529 530
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
531 532


533
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
534 535 536
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
537
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
538
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
539 540 541 542 543 544

    Examples:
    
        .. code-block:: python

            import numpy as np
545
            from PIL import Image
546
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
547

B
Bin Lu 已提交
548
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
549

550
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
551 552

            fake_img = transform(fake_img)
553
            print(fake_img.size)
L
LielinJiang 已提交
554 555
    """

556 557
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
L
LielinJiang 已提交
558 559
        self.prob = prob

560 561 562
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
563 564 565
        return img


566
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
567 568 569
    """Vertically flip the input data randomly with a given probability.

    Args:
570 571
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
572 573 574 575 576 577

    Examples:
    
        .. code-block:: python

            import numpy as np
578
            from PIL import Image
579
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
580 581 582

            transform = RandomVerticalFlip(224)

583
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
584 585

            fake_img = transform(fake_img)
586 587
            print(fake_img.size)

L
LielinJiang 已提交
588 589
    """

590 591
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
L
LielinJiang 已提交
592 593
        self.prob = prob

594 595 596
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
597 598 599
        return img


600
class Normalize(BaseTransform):
L
LielinJiang 已提交
601 602 603 604 605 606
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
607 608
        mean (int|float|list|tuple): Sequence of means for each channel.
        std (int|float|list|tuple): Sequence of standard deviations for each channel.
609 610 611 612 613
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
614 615 616 617 618
    Examples:
    
        .. code-block:: python

            import numpy as np
619
            from PIL import Image
620
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
621

622 623 624
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
625

626
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
627 628 629

            fake_img = normalize(fake_img)
            print(fake_img.shape)
630
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
631 632 633
    
    """

634 635 636 637 638 639 640
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
641 642 643 644
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
645
            std = [std, std, std]
L
LielinJiang 已提交
646

647 648 649 650
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
651

652 653 654
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
655 656


657 658
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
659 660
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
661
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
662 663

    Args:
664 665 666
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
667 668 669 670 671
    Examples:
    
        .. code-block:: python

            import numpy as np
672 673
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
674

675
            transform = Transpose()
L
LielinJiang 已提交
676

677
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
678 679 680 681 682 683

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

684 685 686 687 688
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
689 690 691
        if F._is_tensor_image(img):
            return img.transpose(self.order)

692 693
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
694

695 696
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
697
        return img.transpose(self.order)
L
LielinJiang 已提交
698 699


700
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
701 702 703 704 705
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
706
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
707 708 709 710 711 712

    Examples:
    
        .. code-block:: python

            import numpy as np
713
            from PIL import Image
714
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
715 716 717

            transform = BrightnessTransform(0.4)

718
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
719 720

            fake_img = transform(fake_img)
721
            
L
LielinJiang 已提交
722 723
    """

724 725 726
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
727

728 729
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
730 731
            return img

732 733
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
734 735


736
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
737 738 739 740 741
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
742
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
743 744 745 746 747 748

    Examples:
    
        .. code-block:: python

            import numpy as np
749
            from PIL import Image
750
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
751 752 753

            transform = ContrastTransform(0.4)

754
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
755 756

            fake_img = transform(fake_img)
757

L
LielinJiang 已提交
758 759
    """

760 761
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
762 763
        if value < 0:
            raise ValueError("contrast value should be non-negative")
764
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
765

766 767
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
768 769
            return img

770 771
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
772 773


774
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
775 776 777 778 779
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
780
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
781 782 783 784 785 786

    Examples:
    
        .. code-block:: python

            import numpy as np
787
            from PIL import Image
788
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
789 790 791

            transform = SaturationTransform(0.4)

792
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
793 794
        
            fake_img = transform(fake_img)
795

L
LielinJiang 已提交
796 797
    """

798 799 800
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
801

802 803
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
804 805
            return img

806 807
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
808

L
LielinJiang 已提交
809

810
class HueTransform(BaseTransform):
L
LielinJiang 已提交
811 812 813 814 815
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
816
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
817 818 819 820 821 822

    Examples:
    
        .. code-block:: python

            import numpy as np
823
            from PIL import Image
824
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
825 826 827

            transform = HueTransform(0.4)

828
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
829 830

            fake_img = transform(fake_img)
831

L
LielinJiang 已提交
832 833
    """

834 835 836 837
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
838

839 840
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
841 842
            return img

843 844
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
845 846


847
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
848 849 850
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
851
        brightness (float): How much to jitter brightness.
L
LielinJiang 已提交
852
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
853
        contrast (float): How much to jitter contrast.
L
LielinJiang 已提交
854
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
855
        saturation (float): How much to jitter saturation.
L
LielinJiang 已提交
856
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
857
        hue (float): How much to jitter hue.
L
LielinJiang 已提交
858
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
859
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
860 861 862 863 864 865

    Examples:
    
        .. code-block:: python

            import numpy as np
866
            from PIL import Image
867
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
868

869
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
870

871
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
872 873

            fake_img = transform(fake_img)
874

L
LielinJiang 已提交
875 876
    """

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
894
        transforms = []
895 896 897 898 899 900 901 902 903 904 905 906

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
907 908

        random.shuffle(transforms)
909
        transform = Compose(transforms)
L
LielinJiang 已提交
910

911
        return transform
L
LielinJiang 已提交
912

913 914 915 916
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
917

918 919 920 921 922 923 924 925 926
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
927 928 929 930 931 932 933 934 935 936 937
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
938 939
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
940 941 942 943 944
    Examples:
    
        .. code-block:: python

            import numpy as np
945
            from PIL import Image
946
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
947 948 949

            transform = RandomCrop(224)

950
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
951 952

            fake_img = transform(fake_img)
953
            print(fake_img.size)
L
LielinJiang 已提交
954 955
    """

956 957 958 959 960 961 962 963
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
964 965 966 967 968 969
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
970 971
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
972

973
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
974 975 976
        """Get parameters for ``crop`` for a random crop.

        Args:
977
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
978 979 980 981 982
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
983
        w, h = _get_image_size(img)
L
LielinJiang 已提交
984 985 986 987
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

988 989
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
990 991
        return i, j, th, tw

992
    def _apply_image(self, img):
L
LielinJiang 已提交
993 994
        """
        Args:
995
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
996

997 998
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
999
        """
1000 1001 1002 1003
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1004 1005

        # pad the width if needed
1006 1007 1008
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1009
        # pad the height if needed
1010 1011 1012
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1013

1014
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1015

1016
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1017 1018


1019
class Pad(BaseTransform):
L
LielinJiang 已提交
1020 1021 1022 1023
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1024 1025
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1026 1027
            this is the padding for the left, top, right and bottom borders
            respectively.
1028
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1040 1041
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1042 1043 1044 1045 1046
    Examples:
    
        .. code-block:: python

            import numpy as np
1047
            from PIL import Image
1048
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1049 1050 1051

            transform = Pad(2)

1052
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1053 1054

            fake_img = transform(fake_img)
1055
            print(fake_img.size)
L
LielinJiang 已提交
1056 1057
    """

1058
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1059 1060 1061
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1062 1063 1064 1065 1066 1067 1068

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1069 1070 1071 1072
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1073
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1074 1075 1076 1077
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1078
    def _apply_image(self, img):
L
LielinJiang 已提交
1079 1080
        """
        Args:
1081 1082
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1083
        Returns:
1084
            PIL Image: Padded image.
L
LielinJiang 已提交
1085 1086 1087 1088
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1089
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1090 1091 1092 1093 1094 1095
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1096
        interpolation (str, optional): Interpolation method. If omitted, or if the 
1097 1098 1099 1100 1101 1102 1103 1104 1105
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1106 1107 1108 1109 1110 1111 1112
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1113 1114
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1115 1116 1117 1118 1119
    Examples:
    
        .. code-block:: python

            import numpy as np
1120 1121
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1122

1123
            transform = RandomRotation(90)
L
LielinJiang 已提交
1124

1125
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1126 1127

            fake_img = transform(fake_img)
1128
            print(fake_img.size)
L
LielinJiang 已提交
1129 1130
    """

1131 1132
    def __init__(self,
                 degrees,
1133
                 interpolation='nearest',
1134 1135 1136 1137
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1149
        super(RandomRotation, self).__init__(keys)
1150
        self.interpolation = interpolation
L
LielinJiang 已提交
1151 1152
        self.expand = expand
        self.center = center
1153
        self.fill = fill
L
LielinJiang 已提交
1154

1155
    def _get_param(self, degrees):
L
LielinJiang 已提交
1156 1157 1158 1159
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1160
    def _apply_image(self, img):
L
LielinJiang 已提交
1161
        """
1162 1163 1164
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1165
        Returns:
1166
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1167 1168
        """

1169
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1170

1171 1172
        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center, self.fill)
L
LielinJiang 已提交
1173 1174


1175
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1176 1177 1178
    """Converts image to grayscale.

    Args:
1179 1180 1181
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    Returns:
        CV Image: Grayscale version of the input.
        - If output_channels == 1 : returned image is single channel
        - If output_channels == 3 : returned image is 3 channel with r == g == b

    Examples:
    
        .. code-block:: python

            import numpy as np
1192
            from PIL import Image
1193
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1194 1195 1196

            transform = Grayscale()

1197
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1198 1199

            fake_img = transform(fake_img)
1200
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1201 1202
    """

1203 1204 1205
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1206

1207
    def _apply_image(self, img):
L
LielinJiang 已提交
1208 1209
        """
        Args:
1210 1211
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1212
        Returns:
1213
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1214
        """
1215
        return F.to_grayscale(img, self.num_output_channels)