transforms.py 40.4 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

L
LielinJiang 已提交
28
from paddle.utils import try_import
L
LielinJiang 已提交
29 30 31 32 33 34 35 36 37 38
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

__all__ = [
39 40 41 42 43
    "BaseTransform", "Compose", "Resize", "RandomResizedCrop", "CenterCrop",
    "RandomHorizontalFlip", "RandomVerticalFlip", "Transpose", "Normalize",
    "BrightnessTransform", "SaturationTransform", "ContrastTransform",
    "HueTransform", "ColorJitter", "RandomCrop", "Pad", "RandomRotation",
    "Grayscale", "ToTensor"
L
LielinJiang 已提交
44 45 46
]


47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
        transforms (list): List of transforms to compose.

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

99 100
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
                print(sample[0].shape, sample[1])

    """

    def __init__(self, transforms):
        self.transforms = transforms

114
    def __call__(self, data):
L
LielinJiang 已提交
115 116
        for f in self.transforms:
            try:
117
                data = f(data)
L
LielinJiang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


134 135 136
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
137

138 139 140 141 142 143 144 145 146
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
169 170 171 172 173
    Examples:
    
        .. code-block:: python

            import numpy as np
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
239 240 241

    """

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
275
            outputs.extend(inputs[len(self.keys):])
276 277 278 279 280 281

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
282

283 284
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
285

286 287
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
288

289 290
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
291

292 293
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

    Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a paddle.Tensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.

    Args:
        data_format (str, optional): Data format of input img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))

            transform = T.ToTensor()

            tensor = transform(fake_img)

    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
345 346 347 348 349 350 351 352
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
368 369 370 371 372 373

    Examples:
    
        .. code-block:: python

            import numpy as np
374
            from PIL import Image
375
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
376 377 378

            transform = Resize(size=224)

379
            fake_img = Image.fromarray((np.random.rand(100, 120, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
380 381

            fake_img = transform(fake_img)
382
            print(fake_img.size)
L
LielinJiang 已提交
383 384
    """

385 386
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
387 388 389 390 391
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

392
    def _apply_image(self, img):
L
LielinJiang 已提交
393 394 395
        return F.resize(img, self.size, self.interpolation)


396
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
397 398 399 400 401 402
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
403
        size (int|list|tuple): Target size of output image, with (height, width) shape.
L
LielinJiang 已提交
404 405
        scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0)
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
421 422 423 424 425 426

    Examples:
    
        .. code-block:: python

            import numpy as np
427
            from PIL import Image
428
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
429 430 431

            transform = RandomResizedCrop(224)

432
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
433 434

            fake_img = transform(fake_img)
435 436
            print(fake_img.size)

L
LielinJiang 已提交
437 438 439
    """

    def __init__(self,
440
                 size,
L
LielinJiang 已提交
441 442
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
443 444 445 446 447
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
448
        else:
449
            self.size = size
L
LielinJiang 已提交
450 451 452 453 454 455
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

456 457
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
458 459 460 461 462 463 464 465 466 467 468
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
469 470 471
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
472 473 474 475 476 477 478 479 480

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
481 482
        else:
            # return whole image
L
LielinJiang 已提交
483 484
            w = width
            h = height
485 486 487
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
488

489 490
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
491

492
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
493 494 495
        return F.resize(cropped_img, self.size, self.interpolation)


496
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
497 498 499
    """Crops the given the input data at the center.

    Args:
500 501 502
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

L
LielinJiang 已提交
503 504 505 506 507
    Examples:
    
        .. code-block:: python

            import numpy as np
508
            from PIL import Image
509
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
510 511 512

            transform = CenterCrop(224)

513
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
514 515

            fake_img = transform(fake_img)
516
            print(fake_img.size)
L
LielinJiang 已提交
517 518
    """

519 520 521 522
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
523
        else:
524
            self.size = size
L
LielinJiang 已提交
525

526 527
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
528 529


530
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
531 532 533
    """Horizontally flip the input data randomly with a given probability.

    Args:
534 535
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
536 537 538 539 540 541

    Examples:
    
        .. code-block:: python

            import numpy as np
542
            from PIL import Image
543
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
544 545 546

            transform = RandomHorizontalFlip(224)

547
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
548 549

            fake_img = transform(fake_img)
550
            print(fake_img.size)
L
LielinJiang 已提交
551 552
    """

553 554
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
L
LielinJiang 已提交
555 556
        self.prob = prob

557 558 559
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
560 561 562
        return img


563
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
564 565 566
    """Vertically flip the input data randomly with a given probability.

    Args:
567 568
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
569 570 571 572 573 574

    Examples:
    
        .. code-block:: python

            import numpy as np
575
            from PIL import Image
576
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
577 578 579

            transform = RandomVerticalFlip(224)

580
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
581 582

            fake_img = transform(fake_img)
583 584
            print(fake_img.size)

L
LielinJiang 已提交
585 586
    """

587 588
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
L
LielinJiang 已提交
589 590
        self.prob = prob

591 592 593
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
594 595 596
        return img


597
class Normalize(BaseTransform):
L
LielinJiang 已提交
598 599 600 601 602 603 604 605
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
        mean (int|float|list): Sequence of means for each channel.
        std (int|float|list): Sequence of standard deviations for each channel.
606 607 608 609 610
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
611 612 613 614 615
    Examples:
    
        .. code-block:: python

            import numpy as np
616
            from PIL import Image
617
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
618

619 620 621
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
622

623
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
624 625 626

            fake_img = normalize(fake_img)
            print(fake_img.shape)
627
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
628 629 630
    
    """

631 632 633 634 635 636 637
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
638 639 640 641
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
642
            std = [std, std, std]
L
LielinJiang 已提交
643

644 645 646 647
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
648

649 650 651
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
652 653


654 655
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
656 657
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
658
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
659 660

    Args:
661 662 663
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
664 665 666 667 668
    Examples:
    
        .. code-block:: python

            import numpy as np
669 670
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
671

672
            transform = Transpose()
L
LielinJiang 已提交
673

674
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
675 676 677 678 679 680

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

681 682 683 684 685 686 687
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
688

689 690
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
691
        return img.transpose(self.order)
L
LielinJiang 已提交
692 693


694
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
695 696 697 698 699
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
700
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
701 702 703 704 705 706

    Examples:
    
        .. code-block:: python

            import numpy as np
707
            from PIL import Image
708
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
709 710 711

            transform = BrightnessTransform(0.4)

712
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
713 714

            fake_img = transform(fake_img)
715
            
L
LielinJiang 已提交
716 717
    """

718 719 720
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
721

722 723
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
724 725
            return img

726 727
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
728 729


730
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
731 732 733 734 735
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
736
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
737 738 739 740 741 742

    Examples:
    
        .. code-block:: python

            import numpy as np
743
            from PIL import Image
744
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
745 746 747

            transform = ContrastTransform(0.4)

748
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
749 750

            fake_img = transform(fake_img)
751

L
LielinJiang 已提交
752 753
    """

754 755
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
756 757
        if value < 0:
            raise ValueError("contrast value should be non-negative")
758
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
759

760 761
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
762 763
            return img

764 765
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
766 767


768
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
769 770 771 772 773
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
774
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
775 776 777 778 779 780

    Examples:
    
        .. code-block:: python

            import numpy as np
781
            from PIL import Image
782
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
783 784 785

            transform = SaturationTransform(0.4)

786
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
787 788
        
            fake_img = transform(fake_img)
789

L
LielinJiang 已提交
790 791
    """

792 793 794
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
795

796 797
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
798 799
            return img

800 801
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
802

L
LielinJiang 已提交
803

804
class HueTransform(BaseTransform):
L
LielinJiang 已提交
805 806 807 808 809
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
810
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
811 812 813 814 815 816

    Examples:
    
        .. code-block:: python

            import numpy as np
817
            from PIL import Image
818
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
819 820 821

            transform = HueTransform(0.4)

822
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
823 824

            fake_img = transform(fake_img)
825

L
LielinJiang 已提交
826 827
    """

828 829 830 831
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
832

833 834
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
835 836
            return img

837 838
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
839 840


841
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
842 843 844 845
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
        brightness: How much to jitter brightness.
L
LielinJiang 已提交
846
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
L
LielinJiang 已提交
847
        contrast: How much to jitter contrast.
L
LielinJiang 已提交
848
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
L
LielinJiang 已提交
849
        saturation: How much to jitter saturation.
L
LielinJiang 已提交
850
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
L
LielinJiang 已提交
851
        hue: How much to jitter hue.
L
LielinJiang 已提交
852
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
853
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
854 855 856 857 858 859

    Examples:
    
        .. code-block:: python

            import numpy as np
860
            from PIL import Image
861
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
862

863
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
864

865
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
866 867

            fake_img = transform(fake_img)
868

L
LielinJiang 已提交
869 870
    """

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
888
        transforms = []
889 890 891 892 893 894 895 896 897 898 899 900

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
901 902

        random.shuffle(transforms)
903
        transform = Compose(transforms)
L
LielinJiang 已提交
904

905
        return transform
L
LielinJiang 已提交
906

907 908 909 910
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
911

912 913 914 915 916 917 918 919 920
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
921 922 923 924 925 926 927 928 929 930 931
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
932 933
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
934 935 936 937 938
    Examples:
    
        .. code-block:: python

            import numpy as np
939
            from PIL import Image
940
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
941 942 943

            transform = RandomCrop(224)

944
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
945 946

            fake_img = transform(fake_img)
947
            print(fake_img.size)
L
LielinJiang 已提交
948 949
    """

950 951 952 953 954 955 956 957
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
958 959 960 961 962 963
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
964 965
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
966

967
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
968 969 970
        """Get parameters for ``crop`` for a random crop.

        Args:
971
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
972 973 974 975 976
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
977
        w, h = _get_image_size(img)
L
LielinJiang 已提交
978 979 980 981
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

982 983
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
984 985
        return i, j, th, tw

986
    def _apply_image(self, img):
L
LielinJiang 已提交
987 988
        """
        Args:
989
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
990

991 992
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
993
        """
994 995 996 997
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
998 999

        # pad the width if needed
1000 1001 1002
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1003
        # pad the height if needed
1004 1005 1006
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1007

1008
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1009

1010
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1011 1012


1013
class Pad(BaseTransform):
L
LielinJiang 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1034 1035
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1036 1037 1038 1039 1040
    Examples:
    
        .. code-block:: python

            import numpy as np
1041
            from PIL import Image
1042
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1043 1044 1045

            transform = Pad(2)

1046
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1047 1048

            fake_img = transform(fake_img)
1049
            print(fake_img.size)
L
LielinJiang 已提交
1050 1051
    """

1052
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1053 1054 1055
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1056 1057 1058 1059 1060 1061 1062

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1063 1064 1065 1066
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1067
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1068 1069 1070 1071
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1072
    def _apply_image(self, img):
L
LielinJiang 已提交
1073 1074
        """
        Args:
1075 1076
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1077
        Returns:
1078
            PIL Image: Padded image.
L
LielinJiang 已提交
1079 1080 1081 1082
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1083
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1084 1085 1086 1087 1088 1089
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
        resample (int|str, optional): An optional resampling filter. If omitted, or if the 
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1101 1102 1103 1104 1105 1106 1107
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1108 1109
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1110 1111 1112 1113 1114
    Examples:
    
        .. code-block:: python

            import numpy as np
1115 1116
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1117

1118
            transform = RandomRotation(90)
L
LielinJiang 已提交
1119

1120
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1121 1122

            fake_img = transform(fake_img)
1123
            print(fake_img.size)
L
LielinJiang 已提交
1124 1125
    """

1126 1127 1128 1129 1130 1131 1132
    def __init__(self,
                 degrees,
                 resample=False,
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1144 1145
        super(RandomRotation, self).__init__(keys)
        self.resample = resample
L
LielinJiang 已提交
1146 1147
        self.expand = expand
        self.center = center
1148
        self.fill = fill
L
LielinJiang 已提交
1149

1150
    def _get_param(self, degrees):
L
LielinJiang 已提交
1151 1152 1153 1154
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1155
    def _apply_image(self, img):
L
LielinJiang 已提交
1156
        """
1157 1158 1159
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1160
        Returns:
1161
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1162 1163
        """

1164
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1165

1166 1167
        return F.rotate(img, angle, self.resample, self.expand, self.center,
                        self.fill)
L
LielinJiang 已提交
1168 1169


1170
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1171 1172 1173
    """Converts image to grayscale.

    Args:
1174 1175 1176
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    Returns:
        CV Image: Grayscale version of the input.
        - If output_channels == 1 : returned image is single channel
        - If output_channels == 3 : returned image is 3 channel with r == g == b

    Examples:
    
        .. code-block:: python

            import numpy as np
1187
            from PIL import Image
1188
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1189 1190 1191

            transform = Grayscale()

1192
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1193 1194

            fake_img = transform(fake_img)
1195
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1196 1197
    """

1198 1199 1200
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1201

1202
    def _apply_image(self, img):
L
LielinJiang 已提交
1203 1204
        """
        Args:
1205 1206
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1207
        Returns:
1208
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1209
        """
1210
        return F.to_grayscale(img, self.num_output_channels)