tester_helper.h 20.2 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41 42
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
43
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
44 45 46 47
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
48 49
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
50 51
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
52
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
L
luotao1 已提交
53
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
L
luotao1 已提交
54

55
DECLARE_bool(profile);
L
luotao1 已提交
56
DECLARE_int32(paddle_num_threads);
57

L
luotao1 已提交
58 59 60
namespace paddle {
namespace inference {

61
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
62
  const auto *analysis_config =
63
      reinterpret_cast<const AnalysisConfig *>(config);
64
  if (use_analysis) {
65
    LOG(INFO) << *analysis_config;
66 67
    return;
  }
68
  LOG(INFO) << analysis_config->ToNativeConfig();
69
}
Y
Yan Chunwei 已提交
70

71
// Compare result between two PaddleTensor
L
luotao1 已提交
72
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
73
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
74
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
75
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
76 77
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
78
    auto &ref_out = ref_outputs[i];
79 80
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
81
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
97
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
98 99 100
        }
        break;
      }
101 102 103 104 105 106 107 108
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
109 110 111 112
    }
  }
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
L
luotao1 已提交
144 145 146 147 148 149 150 151 152
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
153 154 155 156
    }
  }
}

157
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
158
    const PaddlePredictor::Config *config, bool use_analysis = true) {
159
  const auto *analysis_config =
160
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
161
  if (use_analysis) {
162
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
163
  }
164 165
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
166 167
}

168
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
169

170
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
171
                                                   int *num_ops) {
172
  std::unordered_map<std::string, int> res;
173
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
174 175 176 177 178 179
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
180 181 182 183
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
184 185
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
186 187 188 189
      ++num;
    }
  }
  *num_ops = num;
190
  return *fusion_status;
T
Tao Luo 已提交
191 192
}

T
Tao Luo 已提交
193
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
194 195
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
196
                       std::string params_filename = "params",
N
nhzlx 已提交
197 198
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
199 200
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
201 202 203 204 205 206 207 208 209 210 211
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
235 236
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
237
    }
T
Tao Luo 已提交
238 239 240 241
  }
  (*inputs).emplace_back(input_slots);
}

242 243 244 245 246 247 248 249 250 251 252 253
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
254 255 256 257 258 259 260 261 262 263 264
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
265 266
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
L
luotao1 已提交
267 268 269 270 271
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
272

L
luotao1 已提交
273 274 275 276 277 278 279 280 281 282 283 284
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
                      std::vector<PaddleTensor> *outputs, int num_threads,
                      int tid) {
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
285
    predictor->Run(inputs[0], outputs, batch_size);
L
luotao1 已提交
286 287
  } else {
    predictor->ZeroCopyRun();
288
  }
L
luotao1 已提交
289 290 291 292 293
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
294

L
luotao1 已提交
295 296 297 298 299 300 301 302 303
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
                   std::vector<PaddleTensor> *outputs, int num_threads,
                   int tid) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
304
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
305
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
306
#endif
L
luotao1 已提交
307 308 309 310 311
  if (!FLAGS_zero_copy) {
    run_timer.tic();
    for (size_t i = 0; i < inputs.size(); i++) {
      for (int j = 0; j < num_times; j++) {
        predictor->Run(inputs[i], outputs, batch_size);
312
      }
L
luotao1 已提交
313
    }
L
luotao1 已提交
314 315 316 317 318 319 320 321 322 323 324
    elapsed_time = run_timer.toc();
  } else {
    for (size_t i = 0; i < inputs.size(); i++) {
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
    }
  }
Y
Yiqun Liu 已提交
325
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
326
  ProfilerStop();
Y
Yiqun Liu 已提交
327
#endif
N
nhzlx 已提交
328

L
luotao1 已提交
329 330 331 332 333 334 335 336
  PrintTime(batch_size, num_times, num_threads, tid, elapsed_time / num_times,
            inputs.size());
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
    benchmark.SetBatchSize(batch_size);
    benchmark.SetLatency(elapsed_time / num_times);
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
337 338 339
  }
}

L
luotao1 已提交
340 341 342 343 344 345 346 347 348
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
  auto predictor = CreateTestPredictor(config, use_analysis);
  PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0);
  PredictionRun(predictor.get(), inputs, outputs, 1, 0);
}

L
luotao1 已提交
349
void TestMultiThreadPrediction(
350
    const PaddlePredictor::Config *config,
351
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
352 353
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
354
  std::vector<std::thread> threads;
L
luotao1 已提交
355 356 357 358 359
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
360

L
luotao1 已提交
361 362 363 364 365
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
L
luotao1 已提交
366
      auto &predictor = predictors[tid];
L
luotao1 已提交
367 368 369
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
370
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
371 372
      }
#endif
L
luotao1 已提交
373 374
      PredictionWarmUp(predictor.get(), inputs, outputs, num_threads, tid);
      PredictionRun(predictor.get(), inputs, outputs, num_threads, tid);
L
luotao1 已提交
375 376 377 378 379 380 381
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

382
void TestPrediction(const PaddlePredictor::Config *config,
383
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
384 385
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
386
  PrintConfig(config, use_analysis);
L
luotao1 已提交
387
  if (num_threads == 1) {
T
Tao Luo 已提交
388
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
389
  } else {
T
Tao Luo 已提交
390 391
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
392 393 394
  }
}

L
luotao1 已提交
395 396 397 398 399 400 401 402 403
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
404 405 406 407
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
408 409 410 411 412 413
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
414
void CompareNativeAndAnalysis(
415
    const PaddlePredictor::Config *config,
416
    const std::vector<std::vector<PaddleTensor>> &inputs) {
417
  PrintConfig(config, true);
T
Tao Luo 已提交
418
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
419
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
420 421 422 423
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

N
nhzlx 已提交
424 425 426 427 428 429 430 431 432 433
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
void CompareAnalysisAndZeroCopy(
    PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
  reinterpret_cast<AnalysisConfig *>(config)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config, true);
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
453
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
454 455 456 457 458
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

L
luotao1 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
540
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
541 542 543 544 545 546 547 548
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
549
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
581 582
}  // namespace inference
}  // namespace paddle