new_exec.h 33.5 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#include <iostream>
#include <string>

#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
P
phlrain 已提交
20
#include "paddle/fluid/framework/variable_helper.h"
P
phlrain 已提交
21 22 23 24 25
#include "paddle/fluid/platform/init.h"

#include <chrono>
#include <gperftools/profiler.h>

P
phlrain 已提交
26

P
phlrain 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
//USE_OP(fill_constant);
//USE_OP(elementwise_add);

using namespace std;

namespace paddle {
namespace framework {

class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
      : op_(op), ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    // has only one input
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
    if (it == ins.end()) {
      return false;
    }
    const auto& in = it->second;
    if (in.size() == 0) return false;
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
    return in[0] != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    // has only one output
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
    if (it == outs.end()) {
      return false;
    }
    const auto& out = it->second;
    if (out.size() == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
    return out[0] != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
    if (it == ins.end() || it->second.empty()) {
      return false;
    }
    for (auto& input : it->second) {
      if (input == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
    if (it == outs.end() || it->second.empty()) {
      return false;
    }
    for (auto& output : it->second) {
      if (output == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  std::vector<std::string> Inputs(const std::string& name) const override {
    return op_.Inputs(name);
  }

  std::vector<std::string> Outputs(const std::string& name) const override {
    return op_.Outputs(name);
  }

  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];

    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows."));
    }
  }

  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
            "Op [%s]: Input var size should be equal with output var size",
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));

    Variable* in_var = in_it->second.at(i);
    if (!in_var->IsType<LoDTensor>()) return;
    Variable* out_var = out_it->second.at(j);
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
    auto& in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }

  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetLoDLevel is only used in compile time. The calculation of "
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel."));
  }

  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetLoDLevel is only used in compile time. The calculation of "
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel."));
  }

  bool IsRuntime() const override { return true; }

  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    //cerr << "set out dim" << endl;
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

 protected:
  DDim GetDim(Variable* var) const {
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
    }
  }

  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
  }

  void SetDim(Variable* var, const DDim& dim) {
   
    if (var->IsType<LoDTensor>()) {
   
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
    }
  }

  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
  }

  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
    return ToVarType(var->Type());
  }

 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
    return it->second;
  }

  const OperatorBase& op_;
  const RuntimeContext& ctx_;
};



framework::ProgramDesc load_from_file( const std::string& file_name )
{
  std::ifstream fin(file_name, std::ios::in | std::ios::binary);
  fin.seekg(0, std::ios::end);
  std::string buffer(fin.tellg(), ' ');
  fin.seekg(0, std::ios::beg);
  fin.read(&buffer[0], buffer.size());
  fin.close();

  ProgramDesc program_desc( buffer );
  return program_desc;
}


struct VariableScope
{
    std::vector< std::unique_ptr<Variable> > var_list;
    std::map<std::string, int> name2id;
};




struct OpFuncNode{

    //int unsed;
    std::map< std::string, std::vector<int> > input_index;
    std::map< std::string, std::vector<int> > output_index;
    
    using OpKernelFunc = std::function<void(const ExecutionContext&)>;
    OpKernelFunc kernel_func_;
};

int convert(const platform::Place& place )
{
    if ( is_cpu_place(place )) 
    {
        return 0;
    }
    if( is_gpu_place( place ))
    {
       return 1;
    }

    return -1;
}

void build_variable_scope( const framework::ProgramDesc& pdesc, VariableScope* var_scope )
{
  auto& global_block = pdesc.Block(0);
  
  
  for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }
      //cerr << "var name "  << var->Name() << endl;  

      if ( var_scope->name2id.find( var->Name() ) == var_scope->name2id.end() )
      {
          var_scope->name2id[ var->Name() ] = var_scope->var_list.size();
      }
      
      auto v = new Variable();
P
phlrain 已提交
528 529
      //v->GetMutable<LoDTensor>();
      InitializeVariable(v,  var->GetType());
P
phlrain 已提交
530 531 532 533 534 535 536 537 538 539 540 541
      var_scope->var_list.push_back(std::unique_ptr<Variable>(v));
  }
}

void build_op_func_list( const framework::ProgramDesc& pdesc, std::vector<OperatorBase* >& op_list, 
                          std::vector<OpFuncNode>& vec_func_list,  VariableScope* var_scope,
                          const platform::Place& place )
{
    auto &global_block = pdesc.Block( 0 );

    for ( auto& op : global_block.AllOps() )
    { 
P
phlrain 已提交
542
        cerr << op->Type() << endl;
P
phlrain 已提交
543
        //bool debug = op->Type() == "softmax_with_cross_entropy_grad";
P
phlrain 已提交
544
        bool debug = true;
P
phlrain 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
        
        //cerr << "create op" << endl;
        //auto op_base_u = OpRegistry::CreateOp(*op);
        auto& info = OpInfoMap::Instance().Get( op->Type() );
        
        VariableNameMap inputs_1 = op->Inputs();
        VariableNameMap outputs_1 = op->Outputs();
        AttributeMap attrs_1 = op->GetAttrMap();
        
        if (info.Checker() != nullptr) {
          info.Checker()->Check(&attrs_1);
        }
        auto op_base = info.Creator()( op->Type(), inputs_1, outputs_1, attrs_1);
        
        auto input_names = op->Inputs();
        auto output_names = op->Outputs();
        
        OpFuncNode op_func_node;

        VariableValueMap ins_map;
        std::map< std::string, std::vector<int> > ins_name2id;
        for( auto& var_name_item : input_names)
        {
            std::vector<Variable*> input_vars;
            std::vector<int> vec_ids;
            input_vars.reserve(var_name_item.second.size());
            for (auto& var_name : var_name_item.second) {
                auto it = var_scope->name2id.find( var_name );
                assert( it != var_scope->name2id.end() );
                input_vars.push_back( var_scope->var_list[ it->second].get());
                vec_ids.push_back( it->second );
            }
            ins_map[ var_name_item.first ] = input_vars;
            ins_name2id[ var_name_item.first ] = vec_ids;

        }
        if (debug  ) cerr << "1" << endl;

        
        VariableValueMap outs_map;
        std::map<std::string, std::vector<int> > outs_name2id;
        for( auto& var_name_item : output_names )
        {
            std::vector<Variable*> output_vars;
            std::vector<int> vec_ids;
            output_vars.reserve(var_name_item.second.size());
            for (auto& var_name : var_name_item.second) {
                auto it = var_scope->name2id.find( var_name );
                assert( it != var_scope->name2id.end() );
                //cerr << it->second << "\t" << var_scope.var_list.size() << endl;
                output_vars.push_back( var_scope->var_list[ it->second].get() );
                vec_ids.push_back( it->second );
            } 
            outs_map[ var_name_item.first ] = output_vars;
            //cerr << ToTypeName(output_vars[0]->Type() ) << endl;
            outs_name2id[ var_name_item.first ] = vec_ids;            
        }


        op_func_node.input_index = ins_name2id;
        op_func_node.output_index = outs_name2id;
        RuntimeContext runtime_context( {}, {});
        runtime_context.inputs.swap( ins_map );
        runtime_context.outputs.swap(  outs_map );
        //cerr << "create runtime context" << endl;
        RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);
        static_cast<const framework::OperatorWithKernel*>(op_base)->InferShape( &infer_shape_ctx );
        //cerr << "fin infer shape" << endl;
        auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
        auto kernels_iter = all_op_kernels.find(op->Type() );
        PADDLE_ENFORCE_NE(
            kernels_iter, all_op_kernels.end(),
            platform::errors::Unavailable(
                "There are no kernels which are registered in the %s operator.",
                op->Type() ));
        
        //cerr << "create kernel" << endl;
        using OpKernelFunc = std::function<void(const ExecutionContext&)>;
        using OpKernelMap =
             std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
        if (debug  ) cerr << "2" << endl;
        OpKernelMap& kernels = kernels_iter->second;
        //auto place = platform::CPUPlace();
        //auto place = platform::CUDAPlace(0);
        platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
        auto* dev_ctx = pool.Get(place);
        Scope scope;
        auto exec_ctx = ExecutionContext(*op_base, scope, *dev_ctx, runtime_context );
        if (debug  ) cerr << "21" << endl;
        auto expected_kernel_key = dynamic_cast<const framework::OperatorWithKernel*>(op_base)->GetExpectedKernelType( exec_ctx );
        if (debug  ) cerr << "22" << endl;
        //cerr << "22" << endl;
        
        // add transfer log
P
phlrain 已提交
639 640 641 642
        //cerr << "in map size " << ins_map.size() << endl;
        VariableValueMap&  ins_map_temp = runtime_context.inputs;
        cerr << "ins map siz" <<  ins_map_temp.size() << endl;
        for( auto& var_name_item : ins_map_temp  )
P
phlrain 已提交
643
        {
P
phlrain 已提交
644 645
          cerr << "in name " << var_name_item.first << endl; 
          //auto& vec_ids = ins_name2id[ var_name_item.first ];
P
phlrain 已提交
646 647 648 649
          for( size_t i = 0; i < var_name_item.second.size();  ++i )
          {
            auto var = var_name_item.second[i];
            auto tensor_in = static_cast<const Tensor*>(&(var->Get<LoDTensor>()));
P
phlrain 已提交
650
            cerr << "i " << i << "\t" << tensor_in->IsInitialized() << endl;
P
phlrain 已提交
651 652
            auto kernel_type_for_var = static_cast<const framework::OperatorWithKernel*>(op_base)->GetKernelTypeForVar(
                var_name_item.first, *tensor_in, expected_kernel_key);
P
phlrain 已提交
653 654 655 656 657
            if( debug) 
            {
                cerr << "var name " << var_name_item.first << endl;
                cerr <<  expected_kernel_key.place_ << "\t" << kernel_type_for_var.place_ << endl;
            }
P
phlrain 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671
            if ( !platform::is_same_place(kernel_type_for_var.place_,
                                expected_kernel_key.place_) )
            {
              if(debug) cerr << "add data transfer" << endl;
              // need trans place
              // add var in scope
              // add copy op
              std::string new_var_name = "temp_1" + to_string( var_scope->var_list.size() + 1);
              auto v = new Variable();
              v->GetMutable<LoDTensor>();
              var_scope->name2id[ new_var_name ] = var_scope->var_list.size();
              var_scope->var_list.push_back(std::unique_ptr<Variable>(v));

              VariableNameMap copy_in_map;
P
phlrain 已提交
672 673
              cerr << "ints name is " << input_names[var_name_item.first][i] << endl;
              copy_in_map["X"] = { input_names[var_name_item.first][i] };
P
phlrain 已提交
674 675 676 677 678 679 680 681 682 683
              VariableNameMap copy_out_map;
              copy_out_map["Out"] = { new_var_name };
              AttributeMap attr_map;
              attr_map["dst_place_type"] = convert( place ); 

              std::map< std::string, std::vector<int> > copy_ins_name2id;
              copy_ins_name2id["X"] = ins_name2id[ var_name_item.first ];
              std::map< std::string, std::vector<int> > copy_out_name2id;
              copy_out_name2id["Out"] = { var_scope->name2id[new_var_name]};

P
phlrain 已提交
684 685 686
              //vec_ids[i] = var_scope->name2id[new_var_name];
              // update out runtime_context
              op_func_node.input_index[ var_name_item.first ][i] = var_scope->name2id[new_var_name];
P
phlrain 已提交
687

P
phlrain 已提交
688 689
              VariableValueMap copy_ins_value_map;              
              copy_ins_value_map["X"] = { var };
P
phlrain 已提交
690 691
              VariableValueMap copy_outs_value_map;
              copy_outs_value_map["Out"] = { v };
P
phlrain 已提交
692

P
phlrain 已提交
693
              
P
phlrain 已提交
694 695 696 697
              
              auto& copy_info = OpInfoMap::Instance().Get( "memcpy" );
              auto copy_op = copy_info.Creator()( "memcpy", copy_in_map, copy_out_map, attr_map);
              if(debug) cerr << "create memcpy" << endl;
P
phlrain 已提交
698 699 700 701
              OpFuncNode copy_op_func_node;
              copy_op_func_node.input_index = copy_ins_name2id;
              copy_op_func_node.output_index = copy_out_name2id;

P
phlrain 已提交
702 703 704
              RuntimeContext copy_runtime_context( {}, {});
              copy_runtime_context.inputs.swap( copy_ins_value_map );
              copy_runtime_context.outputs.swap(  copy_outs_value_map );
P
phlrain 已提交
705
              //cerr << "create runtime context" << endl;
P
phlrain 已提交
706 707 708 709
              RuntimeInferShapeContext copy_infer_shape_ctx(*copy_op, copy_runtime_context);
              if(debug) cerr << "before infer shape" << endl;
              static_cast<const framework::OperatorWithKernel*>(copy_op)->InferShape( &copy_infer_shape_ctx );
              if(debug) cerr << "infer shape" << endl;
P
phlrain 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
              //cerr << "fin infer shape" << endl;
              auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
              auto kernels_iter = all_op_kernels.find( "memcpy" );
              PADDLE_ENFORCE_NE(
                  kernels_iter, all_op_kernels.end(),
                  platform::errors::Unavailable("There are no kernels which are registered in the memcpy operator.") );
               
              
              //cerr << "create kernel" << endl;
              using OpKernelFunc = std::function<void(const ExecutionContext&)>;
              using OpKernelMap =
                  std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
              
              OpKernelMap& kernels = kernels_iter->second;
              //auto place = platform::CPUPlace();
              //auto place = platform::CUDAPlace(0);
P
phlrain 已提交
726
              
P
phlrain 已提交
727 728 729
              platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
              auto* dev_ctx = pool.Get(place);
              Scope scope;
P
phlrain 已提交
730
              auto copy_exec_ctx = ExecutionContext(*copy_op, scope, *dev_ctx, copy_runtime_context );
P
phlrain 已提交
731
              if (debug  ) cerr << "21" << endl;
P
phlrain 已提交
732
              auto expected_kernel_key = dynamic_cast<const framework::OperatorWithKernel*>(copy_op)->GetExpectedKernelType( copy_exec_ctx );
P
phlrain 已提交
733 734 735 736
              if (debug  ) cerr << "22" << endl;
              //cerr << "22" << endl;
              auto kernel_iter = kernels.find(expected_kernel_key);
              copy_op_func_node.kernel_func_ = OpKernelFunc( kernel_iter->second );
P
phlrain 已提交
737 738
              copy_op_func_node.kernel_func_( copy_exec_ctx );
              if(debug) cerr << "run exe ctx" << endl;
P
phlrain 已提交
739 740 741

              op_list.push_back( copy_op );
              vec_func_list.push_back( copy_op_func_node);
P
phlrain 已提交
742 743 744


              var_name_item.second[i] = v;
P
phlrain 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
            }
          }                    
        }
        
        op_list.push_back( op_base );
        
        auto kernel_iter = kernels.find(expected_kernel_key);

        if (debug  ) cerr << "3" << endl;
        op_func_node.kernel_func_ = OpKernelFunc(kernel_iter->second);
        if (debug  ) cerr << "3-1" << endl;
        op_func_node.kernel_func_(  exec_ctx );
        vec_func_list.push_back( op_func_node );
        if (debug  ) cerr << "5" << endl;
    }
    
}



void exec_op_func_list( const std::vector<OpFuncNode>& vec_func_list, 
                        std::vector< OperatorBase* >& op_list, 
                        const VariableScope& var_scope,
                        const platform::Place& place)
{
    for( size_t i = 0; i < vec_func_list.size(); ++i )    
    {
        auto& func_node = vec_func_list[i];
        auto op_base = op_list[i];
        // build runtime cost
        VariableValueMap ins_map;        
        for( auto& var_name_item : func_node.input_index)
        {
            std::vector<Variable*> input_vars;
            
            input_vars.reserve(var_name_item.second.size());
            for (auto& id : var_name_item.second) {    
                cerr << var_name_item.first << "\t " << id << endl;            
                input_vars.emplace_back( var_scope.var_list[ id ].get() );                
            }
            ins_map.emplace( var_name_item.first, std::move(input_vars) );            
        }

        VariableValueMap outs_map;        
        for( auto& var_name_item : func_node.output_index)
        {
            std::vector<Variable*> out_vars;
            
            out_vars.reserve(var_name_item.second.size());
            for (auto& id : var_name_item.second) {       
                cerr << var_name_item.first << "\t " << id << endl;         
                out_vars.emplace_back( var_scope.var_list[ id ].get());                 
            }            
            outs_map.emplace( var_name_item.first, std::move( out_vars ) );
        }

        RuntimeContext runtime_context( {}, {});
        runtime_context.inputs.swap( ins_map );
        runtime_context.outputs.swap(  outs_map );
        
        RuntimeInferShapeContext infer_shape_ctx( *op_base, runtime_context);
       
        //dynamic_cast<const framework::OperatorWithKernel*>(op_base)->InferShape( &infer_shape_ctx );
        //RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);
        static_cast<const framework::OperatorWithKernel*>(op_base)->InferShape( &infer_shape_ctx );

       
        platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
        //auto place = platform::CPUPlace();
        //auto place = platform::CUDAPlace(0);
        auto* dev_ctx = pool.Get(place);
        Scope scope;
        
      
        auto exec_context = ExecutionContext(*op_base, scope, *dev_ctx, runtime_context );
        
        func_node.kernel_func_( exec_context );
        
    }
}

class InterpreterCore
{
public:
  InterpreterCore( const platform::Place& place, const ProgramDesc& prog ) : place_(place), prog_(prog) {
    paddle::framework::InitDevices();

    is_build = false;

  } 
  void run( const std::vector<std::string> vec_name, const std::vector<framework::Tensor>& vec_tensor, const vector<std::string>& vec_fetch_name)
  {
    cerr << "run" << endl;
      // set static data
    if( is_build == false )
    {
      paddle::framework::build_variable_scope( prog_, &global_scope );
    }
    for ( size_t i = 0; i < vec_name.size(); ++i )
    {
        auto it = global_scope.name2id.find( vec_name[i] );
        cerr << "find " << ( it != global_scope.name2id.end() ) <<endl;
        assert( it != global_scope.name2id.end() );
        
        auto feed_tensor = global_scope.var_list[ it->second]->GetMutable<framework::LoDTensor>();
        cerr << " get tensor" << endl;
        feed_tensor->ShareDataWith( vec_tensor[i] );
        cerr << "share buffer with" << endl;
    }
    
    if( is_build == false )
    {
      paddle::framework::build_op_func_list( prog_, op_list, vec_func_list, &global_scope, place_);
      is_build = true;
    }
P
phlrain 已提交
860 861 862 863
    else
    {
      paddle::framework::exec_op_func_list( vec_func_list, op_list, global_scope, place_ );
    }
P
phlrain 已提交
864 865 866 867 868 869 870 871 872 873
    
    for( size_t i = 0; i < vec_fetch_name.size(); ++i )
    {
       auto it = global_scope.name2id.find( vec_fetch_name[i] );
        assert( it != global_scope.name2id.end() );
        
        auto fetch_tensor = global_scope.var_list[ it->second]->GetMutable<framework::LoDTensor>();


        //cerr << "out  "  << fetch_tensor->data<float>()[0] << endl;
P
phlrain 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886
        if ( platform::is_gpu_place(fetch_tensor->place() ) )
        {
          cerr << "fetch gpu" << endl;
            Tensor out;
            platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
            auto* dev_ctx = pool.Get(place_);
            dev_ctx->Wait();
            TensorCopySync(*fetch_tensor, platform::CPUPlace(), &out);
            dev_ctx->Wait();
            cerr << "out  " << out << endl;
        }
        else
        {
P
phlrain 已提交
887

P
phlrain 已提交
888 889
          cerr << "out  "  << *fetch_tensor << endl;
        }
P
phlrain 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    }
  }
private:
  const platform::Place& place_;
  const ProgramDesc& prog_;
  paddle::framework::VariableScope global_scope;
  std::vector<paddle::framework::OpFuncNode> vec_func_list;
  std::vector< paddle::framework::OperatorBase* > op_list;

  bool is_build;
  
};

}
}