#include #include #include #include #include #include #include #include "paddle/fluid/framework/executor_gc_helper.h" #include "paddle/fluid/framework/garbage_collector.h" #include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/platform/init.h" #include #include //USE_OP(fill_constant); //USE_OP(elementwise_add); using namespace std; namespace paddle { namespace framework { class RuntimeInferShapeContext : public InferShapeContext { public: RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx) : op_(op), ctx_(ctx) {} bool HasInput(const std::string& name) const override { // has only one input const auto& ins = ctx_.inputs; auto it = ins.find(name); if (it == ins.end()) { return false; } const auto& in = it->second; if (in.size() == 0) return false; PADDLE_ENFORCE_EQ( in.size(), 1UL, platform::errors::InvalidArgument( "Input %s should not contain more than one inputs.", name)); return in[0] != nullptr; } bool HasOutput(const std::string& name) const override { // has only one output const auto& outs = ctx_.outputs; auto it = outs.find(name); if (it == outs.end()) { return false; } const auto& out = it->second; if (out.size() == 0) { return false; } PADDLE_ENFORCE_EQ( out.size(), 1UL, platform::errors::InvalidArgument( "Output %s should not contain more than one outputs.", name)); return out[0] != nullptr; } bool HasInputs(const std::string& name) const override { const auto& ins = ctx_.inputs; auto it = ins.find(name); if (it == ins.end() || it->second.empty()) { return false; } for (auto& input : it->second) { if (input == nullptr) { return false; } } return true; } bool HasOutputs(const std::string& name) const override { const auto& outs = ctx_.outputs; auto it = outs.find(name); if (it == outs.end() || it->second.empty()) { return false; } for (auto& output : it->second) { if (output == nullptr) { return false; } } return true; } AttrReader Attrs() const override { return AttrReader(op_.Attrs()); } std::vector Inputs(const std::string& name) const override { return op_.Inputs(name); } std::vector Outputs(const std::string& name) const override { return op_.Outputs(name); } std::string GetInputNameByIdx(size_t idx) const override { auto& op_proto = paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_; PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(), platform::errors::OutOfRange( "The index should be less than the size of inputs of " "operator %s, but got index is %d and size is %d", op_.Type(), idx, op_proto->inputs().size())); return op_proto->inputs()[idx].name(); } std::string GetOutputNameByIdx(size_t idx) const override { auto& op_proto = paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_; PADDLE_ENFORCE_LT( idx, op_proto->outputs().size(), platform::errors::OutOfRange( "The index should be less than the size of outputs of " "operator %s, but got index is %d and size is %d", op_.Type(), idx, op_proto->outputs().size())); return op_proto->outputs()[idx].name(); } void ShareDim(const std::string& in, const std::string& out, size_t i = 0, size_t j = 0) override { auto in_it = ctx_.inputs.find(in); auto out_it = ctx_.outputs.find(out); PADDLE_ENFORCE_NE( in_it, ctx_.inputs.end(), platform::errors::NotFound("Input %s does not exist.", in)); PADDLE_ENFORCE_NE( out_it, ctx_.outputs.end(), platform::errors::NotFound("Output %s does not exist.", out)); PADDLE_ENFORCE_LT(i, in_it->second.size(), platform::errors::InvalidArgument( "The index of input dimension is out of range, " "excepted index less than %zu, but received %zu.", in_it->second.size(), i)); PADDLE_ENFORCE_LT(j, out_it->second.size(), platform::errors::InvalidArgument( "The index of output dimension is out of range, " "excepted index less than %zu, but received %zu.", out_it->second.size(), j)); Variable* in_var = in_it->second[i]; Variable* out_var = out_it->second[j]; PADDLE_ENFORCE_EQ( in_var->Type(), out_var->Type(), platform::errors::InvalidArgument( "The type of input (%s) and output (%s) are inconsistent.", in, out)); if (in_var->IsType()) { auto& in_sele_rows = in_var->Get(); auto out_sele_rows = out_var->GetMutable(); out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims()); out_sele_rows->set_rows(in_sele_rows.rows()); out_sele_rows->set_height(in_sele_rows.height()); } else if (in_var->IsType()) { auto& in_lod_tensor = in_var->Get(); auto* out_lod_tensor = out_var->GetMutable(); out_lod_tensor->Resize(in_lod_tensor.dims()); } else { PADDLE_THROW(platform::errors::Unimplemented( "Currently, the input type of ShareDim only can be LoDTensor " "or SelectedRows.")); } } void ShareAllLoD(const std::string& in, const std::string& out) const override { auto in_it = ctx_.inputs.find(in); auto out_it = ctx_.outputs.find(out); PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(), platform::errors::NotFound( "Input [%s] found error in Op [%s]", in, op_.Type())); PADDLE_ENFORCE_NE( out_it, ctx_.outputs.end(), platform::errors::NotFound("Output [%s] found error in Op [%s]", out, op_.Type())); auto& in_var_list = in_it->second; auto& out_var_list = out_it->second; PADDLE_ENFORCE_EQ( in_var_list.size(), out_var_list.size(), platform::errors::PreconditionNotMet( "Op [%s]: Input var size should be equal with output var size", op_.Type())); auto& out_var_names = op_.Outputs(out); for (size_t i = 0; i < in_var_list.size(); ++i) { if (out_var_names[i] == framework::kEmptyVarName) { continue; } Variable* in_var = in_var_list[i]; if (!in_var->IsType()) return; Variable* out_var = out_var_list[i]; PADDLE_ENFORCE_EQ(out_var->IsType(), true, platform::errors::PreconditionNotMet( "The %d-th output of Output(%s) must be LoDTensor.", i, out_var_names[i])); auto& in_tensor = in_var->Get(); auto* out_tensor = out_var->GetMutable(); out_tensor->set_lod(in_tensor.lod()); #ifdef PADDLE_WITH_MKLDNN if (in_tensor.layout() != DataLayout::kMKLDNN) #endif out_tensor->set_layout(in_tensor.layout()); } } void ShareLoD(const std::string& in, const std::string& out, size_t i = 0, size_t j = 0) const override { auto in_it = ctx_.inputs.find(in); auto out_it = ctx_.outputs.find(out); PADDLE_ENFORCE_NE( in_it, ctx_.inputs.end(), platform::errors::NotFound("Input %s does not exist.", in)); PADDLE_ENFORCE_NE( out_it, ctx_.outputs.end(), platform::errors::NotFound("Output %s does not exist.", out)); PADDLE_ENFORCE_LT(i, in_it->second.size(), platform::errors::InvalidArgument( "The index of input dimension is out of range, " "excepted index less than %zu, but received %zu.", in_it->second.size(), i)); PADDLE_ENFORCE_LT(j, out_it->second.size(), platform::errors::InvalidArgument( "The index of output dimension is out of range, " "excepted index less than %zu, but received %zu.", out_it->second.size(), j)); Variable* in_var = in_it->second.at(i); if (!in_var->IsType()) return; Variable* out_var = out_it->second.at(j); PADDLE_ENFORCE_EQ( out_var->IsType(), true, platform::errors::InvalidArgument( "The %zu-th output of Output(%s) must be LoDTensor.", j, out)); auto& in_tensor = in_var->Get(); auto* out_tensor = out_var->GetMutable(); out_tensor->set_lod(in_tensor.lod()); // TODO(dzhwinter) : reuse ShareLoD in most operators. // Need to call ShareLayout explicitly in sequence related ops. // Shall we have a better method to shared info between in/out Tensor? #ifdef PADDLE_WITH_MKLDNN // Fix me: ugly workaround below // Correct solution: // set_layout() should NOT be called here (i.e. ShareLoD). Instead, // layout of output tensor should be set "manually" in Compute() // of each OPKernel. The reason layout should NOT be shared between // input and output "automatically" (now by InferShape()->ShareLoD()) // is that layout transform may occur after InferShape(). // Workaround: // Skip set_layout() when input layout is kMKLDNN // This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN // OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called // in Compute() if (in_tensor.layout() != DataLayout::kMKLDNN) #endif out_tensor->set_layout(in_tensor.layout()); } int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override { PADDLE_THROW(platform::errors::PreconditionNotMet( "GetLoDLevel is only used in compile time. The calculation of " "output's actual lod is different among operators so that should be " "set in the runtime kernel.")); } void SetLoDLevel(const std::string& out, int32_t lod_level, size_t j = 0) const override { PADDLE_THROW(platform::errors::PreconditionNotMet( "SetLoDLevel is only used in compile time. The calculation of " "output's actual lod is different among operators so that should be " "set in the runtime kernel.")); } bool IsRuntime() const override { return true; } // TODO(paddle-dev): Can this be template? std::vector GetInputVarPtrs( const std::string& name) override { const std::vector& vars = InputVars(name); std::vector res; res.reserve(vars.size()); res.insert(res.begin(), vars.begin(), vars.end()); return res; } std::vector GetOutputVarPtrs( const std::string& name) override { const std::vector& vars = OutputVars(name); std::vector res; res.reserve(vars.size()); res.insert(res.begin(), vars.begin(), vars.end()); return res; } DDim GetInputDim(const std::string& name) const override { const std::vector& vars = InputVars(name); PADDLE_ENFORCE_EQ( vars.size(), 1UL, platform::errors::InvalidArgument( "Input(%s) should hold one element, but now it holds %zu elements.", name, vars.size())); return this->GetDim(vars[0]); } std::vector GetInputsDim(const std::string& name) const override { const std::vector& vars = InputVars(name); return GetDims(vars); } std::vector GetInputsVarType( const std::string& name) const override { return GetVarTypes(InputVars(name)); } std::vector GetOutputsVarType( const std::string& name) const override { return GetVarTypes(OutputVars(name)); } void SetOutputDim(const std::string& name, const DDim& dim) override { //cerr << "set out dim" << endl; auto& vars = OutputVars(name); PADDLE_ENFORCE_EQ( vars.size(), 1UL, platform::errors::InvalidArgument("Output(%s) should hold one element, " "but now it holds %zu elements.", name, vars.size())); SetDim(vars[0], dim); } void SetOutputsDim(const std::string& name, const std::vector& dims) override { auto& vars = OutputVars(name); SetDims(vars, dims); } protected: DDim GetDim(Variable* var) const { PADDLE_ENFORCE_NOT_NULL( var, platform::errors::InvalidArgument("Input variable is nullptr.")); if (var->IsType()) { return var->Get().dims(); } else if (var->IsType()) { return var->Get().GetCompleteDims(); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Only LoDTensor or SelectedRows support 'GetDim', but input " "Variable's type is %s.", ToTypeName(var->Type()))); } } std::vector GetDims(const std::vector& vars) const { std::vector ret; ret.reserve(vars.size()); std::transform(vars.begin(), vars.end(), std::back_inserter(ret), [this](Variable* var) { return this->GetDim(var); }); return ret; } std::vector GetRepeatedDims(const std::string& name) const override { PADDLE_THROW(platform::errors::PreconditionNotMet( "GetRepeatedDims method only ban be used in compile time.")); } void SetDim(Variable* var, const DDim& dim) { if (var->IsType()) { var->GetMutable()->Resize(dim); } else if (var->IsType()) { var->GetMutable()->set_height(dim[0]); } else { PADDLE_THROW(platform::errors::Unimplemented( "Variable type error, expect LoDTensor or SelectedRows, but received " "(%s).", ToTypeName(var->Type()))); } } void SetDims(const std::vector& vars, const std::vector& dims) { size_t length = vars.size(); PADDLE_ENFORCE_EQ(length, dims.size(), platform::errors::InvalidArgument( "The number of input variables do not match the " "number of input dimensions, the number of variables " "is %zu, the number of dimensions is %zu.", length, dims.size())); for (size_t i = 0; i < length; ++i) { if (vars[i] == nullptr) { continue; } SetDim(vars[i], dims[i]); } } void SetRepeatedDims(const std::string& name, const std::vector& dims) override { PADDLE_THROW(platform::errors::PreconditionNotMet( "SetRepeatedDims method only can be used in compile time.")); } std::vector GetVarTypes( const std::vector& vars) const { std::vector retv; retv.resize(vars.size()); std::transform(vars.begin(), vars.end(), retv.begin(), std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType), this, std::placeholders::_1)); return retv; } proto::VarType::Type GetVarType(Variable* var) const { return ToVarType(var->Type()); } private: const std::vector& InputVars(const std::string& name) const { auto it = ctx_.inputs.find(name); PADDLE_ENFORCE_NE( it, ctx_.inputs.end(), platform::errors::NotFound( "Operator (%s) does not have the input (%s).", op_.Type(), name)); return it->second; } const std::vector& OutputVars(const std::string& name) const { auto it = ctx_.outputs.find(name); PADDLE_ENFORCE_NE( it, ctx_.outputs.end(), platform::errors::NotFound( "Operator (%s) does not have the outputs (%s).", op_.Type(), name)); return it->second; } const OperatorBase& op_; const RuntimeContext& ctx_; }; framework::ProgramDesc load_from_file( const std::string& file_name ) { std::ifstream fin(file_name, std::ios::in | std::ios::binary); fin.seekg(0, std::ios::end); std::string buffer(fin.tellg(), ' '); fin.seekg(0, std::ios::beg); fin.read(&buffer[0], buffer.size()); fin.close(); ProgramDesc program_desc( buffer ); return program_desc; } struct VariableScope { std::vector< std::unique_ptr > var_list; std::map name2id; }; struct OpFuncNode{ //int unsed; std::map< std::string, std::vector > input_index; std::map< std::string, std::vector > output_index; using OpKernelFunc = std::function; OpKernelFunc kernel_func_; }; int convert(const platform::Place& place ) { if ( is_cpu_place(place )) { return 0; } if( is_gpu_place( place )) { return 1; } return -1; } void build_variable_scope( const framework::ProgramDesc& pdesc, VariableScope* var_scope ) { auto& global_block = pdesc.Block(0); for (auto& var : global_block.AllVars()) { if (var->Name() == framework::kEmptyVarName) { continue; } //cerr << "var name " << var->Name() << endl; if ( var_scope->name2id.find( var->Name() ) == var_scope->name2id.end() ) { var_scope->name2id[ var->Name() ] = var_scope->var_list.size(); } auto v = new Variable(); //v->GetMutable(); InitializeVariable(v, var->GetType()); var_scope->var_list.push_back(std::unique_ptr(v)); } } void build_op_func_list( const framework::ProgramDesc& pdesc, std::vector& op_list, std::vector& vec_func_list, VariableScope* var_scope, const platform::Place& place ) { auto &global_block = pdesc.Block( 0 ); for ( auto& op : global_block.AllOps() ) { cerr << op->Type() << endl; //bool debug = op->Type() == "softmax_with_cross_entropy_grad"; bool debug = true; //cerr << "create op" << endl; //auto op_base_u = OpRegistry::CreateOp(*op); auto& info = OpInfoMap::Instance().Get( op->Type() ); VariableNameMap inputs_1 = op->Inputs(); VariableNameMap outputs_1 = op->Outputs(); AttributeMap attrs_1 = op->GetAttrMap(); if (info.Checker() != nullptr) { info.Checker()->Check(&attrs_1); } auto op_base = info.Creator()( op->Type(), inputs_1, outputs_1, attrs_1); auto input_names = op->Inputs(); auto output_names = op->Outputs(); OpFuncNode op_func_node; VariableValueMap ins_map; std::map< std::string, std::vector > ins_name2id; for( auto& var_name_item : input_names) { std::vector input_vars; std::vector vec_ids; input_vars.reserve(var_name_item.second.size()); for (auto& var_name : var_name_item.second) { auto it = var_scope->name2id.find( var_name ); assert( it != var_scope->name2id.end() ); input_vars.push_back( var_scope->var_list[ it->second].get()); vec_ids.push_back( it->second ); } ins_map[ var_name_item.first ] = input_vars; ins_name2id[ var_name_item.first ] = vec_ids; } if (debug ) cerr << "1" << endl; VariableValueMap outs_map; std::map > outs_name2id; for( auto& var_name_item : output_names ) { std::vector output_vars; std::vector vec_ids; output_vars.reserve(var_name_item.second.size()); for (auto& var_name : var_name_item.second) { auto it = var_scope->name2id.find( var_name ); assert( it != var_scope->name2id.end() ); //cerr << it->second << "\t" << var_scope.var_list.size() << endl; output_vars.push_back( var_scope->var_list[ it->second].get() ); vec_ids.push_back( it->second ); } outs_map[ var_name_item.first ] = output_vars; //cerr << ToTypeName(output_vars[0]->Type() ) << endl; outs_name2id[ var_name_item.first ] = vec_ids; } op_func_node.input_index = ins_name2id; op_func_node.output_index = outs_name2id; RuntimeContext runtime_context( {}, {}); runtime_context.inputs.swap( ins_map ); runtime_context.outputs.swap( outs_map ); //cerr << "create runtime context" << endl; RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context); static_cast(op_base)->InferShape( &infer_shape_ctx ); //cerr << "fin infer shape" << endl; auto& all_op_kernels = OperatorWithKernel::AllOpKernels(); auto kernels_iter = all_op_kernels.find(op->Type() ); PADDLE_ENFORCE_NE( kernels_iter, all_op_kernels.end(), platform::errors::Unavailable( "There are no kernels which are registered in the %s operator.", op->Type() )); //cerr << "create kernel" << endl; using OpKernelFunc = std::function; using OpKernelMap = std::unordered_map; if (debug ) cerr << "2" << endl; OpKernelMap& kernels = kernels_iter->second; //auto place = platform::CPUPlace(); //auto place = platform::CUDAPlace(0); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place); Scope scope; auto exec_ctx = ExecutionContext(*op_base, scope, *dev_ctx, runtime_context ); if (debug ) cerr << "21" << endl; auto expected_kernel_key = dynamic_cast(op_base)->GetExpectedKernelType( exec_ctx ); if (debug ) cerr << "22" << endl; //cerr << "22" << endl; // add transfer log //cerr << "in map size " << ins_map.size() << endl; VariableValueMap& ins_map_temp = runtime_context.inputs; cerr << "ins map siz" << ins_map_temp.size() << endl; for( auto& var_name_item : ins_map_temp ) { cerr << "in name " << var_name_item.first << endl; //auto& vec_ids = ins_name2id[ var_name_item.first ]; for( size_t i = 0; i < var_name_item.second.size(); ++i ) { auto var = var_name_item.second[i]; auto tensor_in = static_cast(&(var->Get())); cerr << "i " << i << "\t" << tensor_in->IsInitialized() << endl; auto kernel_type_for_var = static_cast(op_base)->GetKernelTypeForVar( var_name_item.first, *tensor_in, expected_kernel_key); if( debug) { cerr << "var name " << var_name_item.first << endl; cerr << expected_kernel_key.place_ << "\t" << kernel_type_for_var.place_ << endl; } if ( !platform::is_same_place(kernel_type_for_var.place_, expected_kernel_key.place_) ) { if(debug) cerr << "add data transfer" << endl; // need trans place // add var in scope // add copy op std::string new_var_name = "temp_1" + to_string( var_scope->var_list.size() + 1); auto v = new Variable(); v->GetMutable(); var_scope->name2id[ new_var_name ] = var_scope->var_list.size(); var_scope->var_list.push_back(std::unique_ptr(v)); VariableNameMap copy_in_map; cerr << "ints name is " << input_names[var_name_item.first][i] << endl; copy_in_map["X"] = { input_names[var_name_item.first][i] }; VariableNameMap copy_out_map; copy_out_map["Out"] = { new_var_name }; AttributeMap attr_map; attr_map["dst_place_type"] = convert( place ); std::map< std::string, std::vector > copy_ins_name2id; copy_ins_name2id["X"] = ins_name2id[ var_name_item.first ]; std::map< std::string, std::vector > copy_out_name2id; copy_out_name2id["Out"] = { var_scope->name2id[new_var_name]}; //vec_ids[i] = var_scope->name2id[new_var_name]; // update out runtime_context op_func_node.input_index[ var_name_item.first ][i] = var_scope->name2id[new_var_name]; VariableValueMap copy_ins_value_map; copy_ins_value_map["X"] = { var }; VariableValueMap copy_outs_value_map; copy_outs_value_map["Out"] = { v }; auto& copy_info = OpInfoMap::Instance().Get( "memcpy" ); auto copy_op = copy_info.Creator()( "memcpy", copy_in_map, copy_out_map, attr_map); if(debug) cerr << "create memcpy" << endl; OpFuncNode copy_op_func_node; copy_op_func_node.input_index = copy_ins_name2id; copy_op_func_node.output_index = copy_out_name2id; RuntimeContext copy_runtime_context( {}, {}); copy_runtime_context.inputs.swap( copy_ins_value_map ); copy_runtime_context.outputs.swap( copy_outs_value_map ); //cerr << "create runtime context" << endl; RuntimeInferShapeContext copy_infer_shape_ctx(*copy_op, copy_runtime_context); if(debug) cerr << "before infer shape" << endl; static_cast(copy_op)->InferShape( ©_infer_shape_ctx ); if(debug) cerr << "infer shape" << endl; //cerr << "fin infer shape" << endl; auto& all_op_kernels = OperatorWithKernel::AllOpKernels(); auto kernels_iter = all_op_kernels.find( "memcpy" ); PADDLE_ENFORCE_NE( kernels_iter, all_op_kernels.end(), platform::errors::Unavailable("There are no kernels which are registered in the memcpy operator.") ); //cerr << "create kernel" << endl; using OpKernelFunc = std::function; using OpKernelMap = std::unordered_map; OpKernelMap& kernels = kernels_iter->second; //auto place = platform::CPUPlace(); //auto place = platform::CUDAPlace(0); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place); Scope scope; auto copy_exec_ctx = ExecutionContext(*copy_op, scope, *dev_ctx, copy_runtime_context ); if (debug ) cerr << "21" << endl; auto expected_kernel_key = dynamic_cast(copy_op)->GetExpectedKernelType( copy_exec_ctx ); if (debug ) cerr << "22" << endl; //cerr << "22" << endl; auto kernel_iter = kernels.find(expected_kernel_key); copy_op_func_node.kernel_func_ = OpKernelFunc( kernel_iter->second ); copy_op_func_node.kernel_func_( copy_exec_ctx ); if(debug) cerr << "run exe ctx" << endl; op_list.push_back( copy_op ); vec_func_list.push_back( copy_op_func_node); var_name_item.second[i] = v; } } } op_list.push_back( op_base ); auto kernel_iter = kernels.find(expected_kernel_key); if (debug ) cerr << "3" << endl; op_func_node.kernel_func_ = OpKernelFunc(kernel_iter->second); if (debug ) cerr << "3-1" << endl; op_func_node.kernel_func_( exec_ctx ); vec_func_list.push_back( op_func_node ); if (debug ) cerr << "5" << endl; } } void exec_op_func_list( const std::vector& vec_func_list, std::vector< OperatorBase* >& op_list, const VariableScope& var_scope, const platform::Place& place) { for( size_t i = 0; i < vec_func_list.size(); ++i ) { auto& func_node = vec_func_list[i]; auto op_base = op_list[i]; // build runtime cost VariableValueMap ins_map; for( auto& var_name_item : func_node.input_index) { std::vector input_vars; input_vars.reserve(var_name_item.second.size()); for (auto& id : var_name_item.second) { cerr << var_name_item.first << "\t " << id << endl; input_vars.emplace_back( var_scope.var_list[ id ].get() ); } ins_map.emplace( var_name_item.first, std::move(input_vars) ); } VariableValueMap outs_map; for( auto& var_name_item : func_node.output_index) { std::vector out_vars; out_vars.reserve(var_name_item.second.size()); for (auto& id : var_name_item.second) { cerr << var_name_item.first << "\t " << id << endl; out_vars.emplace_back( var_scope.var_list[ id ].get()); } outs_map.emplace( var_name_item.first, std::move( out_vars ) ); } RuntimeContext runtime_context( {}, {}); runtime_context.inputs.swap( ins_map ); runtime_context.outputs.swap( outs_map ); RuntimeInferShapeContext infer_shape_ctx( *op_base, runtime_context); //dynamic_cast(op_base)->InferShape( &infer_shape_ctx ); //RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context); static_cast(op_base)->InferShape( &infer_shape_ctx ); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); //auto place = platform::CPUPlace(); //auto place = platform::CUDAPlace(0); auto* dev_ctx = pool.Get(place); Scope scope; auto exec_context = ExecutionContext(*op_base, scope, *dev_ctx, runtime_context ); func_node.kernel_func_( exec_context ); } } class InterpreterCore { public: InterpreterCore( const platform::Place& place, const ProgramDesc& prog ) : place_(place), prog_(prog) { paddle::framework::InitDevices(); is_build = false; } void run( const std::vector vec_name, const std::vector& vec_tensor, const vector& vec_fetch_name) { cerr << "run" << endl; // set static data if( is_build == false ) { paddle::framework::build_variable_scope( prog_, &global_scope ); } for ( size_t i = 0; i < vec_name.size(); ++i ) { auto it = global_scope.name2id.find( vec_name[i] ); cerr << "find " << ( it != global_scope.name2id.end() ) <second]->GetMutable(); cerr << " get tensor" << endl; feed_tensor->ShareDataWith( vec_tensor[i] ); cerr << "share buffer with" << endl; } if( is_build == false ) { paddle::framework::build_op_func_list( prog_, op_list, vec_func_list, &global_scope, place_); is_build = true; } else { paddle::framework::exec_op_func_list( vec_func_list, op_list, global_scope, place_ ); } for( size_t i = 0; i < vec_fetch_name.size(); ++i ) { auto it = global_scope.name2id.find( vec_fetch_name[i] ); assert( it != global_scope.name2id.end() ); auto fetch_tensor = global_scope.var_list[ it->second]->GetMutable(); //cerr << "out " << fetch_tensor->data()[0] << endl; if ( platform::is_gpu_place(fetch_tensor->place() ) ) { cerr << "fetch gpu" << endl; Tensor out; platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place_); dev_ctx->Wait(); TensorCopySync(*fetch_tensor, platform::CPUPlace(), &out); dev_ctx->Wait(); cerr << "out " << out << endl; } else { cerr << "out " << *fetch_tensor << endl; } } } private: const platform::Place& place_; const ProgramDesc& prog_; paddle::framework::VariableScope global_scope; std::vector vec_func_list; std::vector< paddle::framework::OperatorBase* > op_list; bool is_build; }; } }