gelu_op.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
17

18 19 20 21 22
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
23 24 25 26 27 28

namespace paddle {
namespace operators {

class GeluOp : public framework::OperatorWithKernel {
 public:
29 30
  GeluOp(const std::string &type,
         const framework::VariableNameMap &inputs,
31 32 33 34 35 36 37
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
A
Adam 已提交
38 39
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
40
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
41 42
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
43
        this->CanMKLDNNBeUsed(ctx, data_type)) {
A
Adam 已提交
44 45 46 47
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif
48
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
49 50 51 52 53 54 55 56 57
  }
};

class GeluGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
58 59
        ctx->HasInput(framework::GradVarName("Out")),
        true,
60 61
        platform::errors::InvalidArgument(
            "Input(%s) of GeluGradOp should not be null.", "DOut"));
62 63
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
64 65 66
                      platform::errors::InvalidArgument(
                          "Input(%s) of GeluGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
67 68
        ctx->HasOutput(framework::GradVarName("X")),
        true,
69 70 71 72 73 74 75 76 77 78
        platform::errors::InvalidArgument(
            "Output(%s) of GeluGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
A
Adam 已提交
79 80
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
81
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
82
#ifdef PADDLE_WITH_MKLDNN
83 84 85 86 87
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
A
Adam 已提交
88 89
    }
#endif
90
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  }
};

class GeluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Gelu operator");
    AddOutput("Out", "Output of Gelu operator");
    AddAttr<bool>("approximate",
                  "(bool, default false) use approximation of gelu")
        .SetDefault(false);
    AddComment(R"DOC(
Gelu Activation Operator. 

For more details, please refer to [Gaussian Error Linear Units](https://arxiv.org/pdf/1606.08415.pdf).

when using approximation
$out = \\frac{1}{2}x(1+tanh(\\sqrt{\\frac{2}{\\pi}}(x+0.044715x^{3}))$

or else
$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$

)DOC");
  }
};

template <typename T>
class GeluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("gelu_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

137 138
DECLARE_INFER_SHAPE_FUNCTOR(gelu,
                            GeluInferShapeFunctor,
139
                            PD_INFER_META(phi::UnchangedInferMeta));
140 141 142
REGISTER_OPERATOR(gelu,
                  ops::GeluOp,
                  ops::GeluOpMaker,
143
                  ops::GeluGradOpMaker<paddle::framework::OpDesc>,
144 145
                  ops::GeluGradOpMaker<paddle::imperative::OpBase>,
                  GeluInferShapeFunctor);
146
REGISTER_OPERATOR(gelu_grad, ops::GeluGradOp);