gelu_op.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
17

18 19 20 21 22
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36

namespace paddle {
namespace operators {

class GeluOp : public framework::OperatorWithKernel {
 public:
  GeluOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
A
Adam 已提交
37 38
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
39
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
40 41 42
#ifdef PADDLE_WITH_MKLDNN
    auto it = this->Attrs().find("use_mkldnn");
    if (library == framework::LibraryType::kPlain &&
43
        it != this->Attrs().end() && this->CanMKLDNNBeUsed(ctx, data_type)) {
A
Adam 已提交
44 45 46 47
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif
48
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  }
};

class GeluGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument(
            "Input(%s) of GeluGradOp should not be null.", "DOut"));
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(%s) of GeluGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::InvalidArgument(
            "Output(%s) of GeluGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
A
Adam 已提交
76 77
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
78
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
79 80 81
#ifdef PADDLE_WITH_MKLDNN
    auto it = this->Attrs().find("use_mkldnn");
    if (library == framework::LibraryType::kPlain &&
82
        it != this->Attrs().end() && this->CanMKLDNNBeUsed(ctx, data_type)) {
A
Adam 已提交
83 84 85 86
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif
87
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
88 89 90 91 92 93 94 95 96 97 98 99 100
  }
};

class GeluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Gelu operator");
    AddOutput("Out", "Output of Gelu operator");
    AddAttr<bool>("approximate",
                  "(bool, default false) use approximation of gelu")
        .SetDefault(false);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
101 102
        .SetDefault(false)
        .AsExtra();
103 104 105 106
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
107 108
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
109 110 111
    AddAttr<bool>("use_cudnn",
                  "(bool, default false) Only used in cudnn kernel, need "
                  "install cudnn")
112 113
        .SetDefault(false)
        .AsExtra();
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    AddComment(R"DOC(
Gelu Activation Operator. 

For more details, please refer to [Gaussian Error Linear Units](https://arxiv.org/pdf/1606.08415.pdf).

when using approximation
$out = \\frac{1}{2}x(1+tanh(\\sqrt{\\frac{2}{\\pi}}(x+0.044715x^{3}))$

or else
$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$

)DOC");
  }
};

template <typename T>
class GeluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("gelu_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

149 150
DECLARE_INFER_SHAPE_FUNCTOR(gelu, GeluInferShapeFunctor,
                            PD_INFER_META(phi::UnchangedInferMeta));
151 152
REGISTER_OPERATOR(gelu, ops::GeluOp, ops::GeluOpMaker,
                  ops::GeluGradOpMaker<paddle::framework::OpDesc>,
153 154
                  ops::GeluGradOpMaker<paddle::imperative::OpBase>,
                  GeluInferShapeFunctor);
155
REGISTER_OPERATOR(gelu_grad, ops::GeluGradOp);