broadcast_function.h 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/kernels/funcs/elementwise_base.h"
18

19
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
20

21
namespace kps = phi::kps;
22 23 24

#endif

25
namespace phi {
26 27
namespace funcs {

28 29
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)

30 31 32 33
struct DimensionsTransform {
  using DimVector = std::vector<int64_t>;
  typedef void (*MergeFunctor)(
      bool &, std::vector<DimVector> &, DimVector &, int, int);
34
  int64_t N;
35 36 37 38 39
  int64_t dim_size;
  DimVector out_dims;
  std::vector<DimVector> in_dims;

 private:
40 41
  // To compensate the lackage of input_tensors` dimension with input
  // variable 'axis'.
42 43 44 45 46 47 48 49 50 51 52
  void InputDimensionsExtend(int N, int axis) {
    for (auto &in_dim : in_dims) {
      int64_t in_idx = 0;
      if (in_dim.size() < dim_size) {
        DimVector tmp_dim(dim_size, 1);
        do {
          if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
            tmp_dim[axis] = in_dim[in_idx];
            in_idx++;
            axis++;
          } else {
53
            PADDLE_THROW(phi::errors::InvalidArgument(
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                axis + 1,
                out_dims[axis],
                in_dim[in_idx]));
          }
        } while (in_idx < in_dim.size());
        in_dim.resize(dim_size);
        std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
      } else {
        do {
          if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
            in_idx++;
          } else {
70
            PADDLE_THROW(phi::errors::InvalidArgument(
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                in_idx + 1,
                out_dims[in_idx],
                in_dim[in_idx]));
          }
        } while (in_idx < dim_size);
      }
      std::reverse(in_dim.begin(), in_dim.end());
    }
    std::reverse(out_dims.begin(), out_dims.end());
  }

86 87
  // Merge sequential dimension to shrink calculation cost for
  // offset computation in CUDA Kernel.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  template <typename MergeFunctor>
  __inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
    auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
      (*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
                                          vec->begin() + m_idx,
                                          1,
                                          std::multiplies<int64_t>());
      vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
    };

    int64_t i = 0;
    while (i < dim_size) {
      int cnt = 0;
      int low_idx = i;
      bool equal = true;
      do {
        merge_func(equal, in_dims, out_dims, i, N);
        if (equal) {
          i++;
          cnt++;
        } else {
          break;
        }
      } while (i < dim_size);

      if (cnt > 1) {
        for (auto &in_dim : in_dims) {
          VectorReorganise(&in_dim, low_idx, i);
        }
        VectorReorganise(&out_dims, low_idx, i);
        dim_size -= --cnt;
        i -= cnt;
      } else if (cnt < 1) {
        i++;
      }
    }
  }

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  // To judge whether shape of any input tensors is sequential
  // 1-value-dimensions, and metric the length of it.
  int GetSequentialOneDimLength(int *swap_index) {
    int index = 0;
    int max_one_length = 0;
    for (int j = 0; j < N; ++j) {
      int seq_one_length = 0;
      bool active_seq = false;

      for (int i = 0; i < dim_size; ++i) {
        if (!active_seq && in_dims[j][i] == 1) {
          seq_one_length = 1;
          active_seq = true;
        } else if (active_seq) {
          if (in_dims[j][i] == 1) {
            seq_one_length++;
          } else {
            active_seq = false;
          }
        }
      }
      max_one_length =
          seq_one_length > max_one_length ? seq_one_length : max_one_length;
      index = seq_one_length > max_one_length ? j : index;
    }

    if (max_one_length > 1) {
      std::swap(in_dims[0], in_dims[index]);
      *swap_index = index;
    }
    return max_one_length;
  }

159 160
 public:
  explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
161
                               const phi::DDim &dims,
162
                               int axis) {
163
    N = std::max(static_cast<int>(ins.size()), 2);
164
    dim_size = dims.size();
165
    out_dims = phi::vectorize<int64_t>(dims);
166 167 168
    in_dims.resize(N);
    if (ins.size() == 1) {
      // when ins.size() = 1, broadcast input to output
169
      in_dims[0] = phi::vectorize<int64_t>(ins[0]->dims());
170 171 172 173
      in_dims[1] = out_dims;
      // Add out_dims to in_dims to avoid errors in dims merging
    } else {
      for (int j = 0; j < N; ++j) {
174
        in_dims[j] = phi::vectorize<int64_t>(ins[j]->dims());
175 176 177 178
      }
    }
    InputDimensionsExtend(N, axis);

179 180 181 182 183
    // To Merge the dimensions of input_tensors while the consequtive
    // equal-dimensions appears. Example below :
    //   in_1.shape = [2, 3, 4, 5]    in_1.shape = [2, 12, 5]
    //   in_2.shape = [1, 3, 4, 5] -> in_2.shape = [1, 12, 5]
    //   in_3.shape = [2, 3, 4, 1]    in_3.shape = [2, 12, 1]
184 185 186 187 188 189 190 191 192
    auto merge_sequential_dims = [](bool &equal,
                                    std::vector<DimVector> &in_dims,
                                    DimVector &out,
                                    int i,
                                    int num) {
      for (int j = 1; j < num; ++j) {
        equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
      }
    };
193 194 195 196 197 198 199 200 201 202 203
    MergeFunctor merge_ptr = merge_sequential_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);

    // To Merge the dimension of input_tensors while the sequential
    // 1-value-dimensions appears. Example below :
    //   in_1.shape = [2, 1, 1, 5]    in_1.shape = [2,  1, 5]
    //   in_2.shape = [2, 3, 4, 5] -> in_2.shape = [1, 12, 5]
    //   in_3.shape = [2, 3, 4, 1]    in_3.shape = [2, 12, 1]
    // Caution: Once 1-value-dimensions appears, the corresponding
    // shape position of other input tensors must be same with the
    // output tensor`s shape, or incorrect merge may occur.
204 205 206 207 208 209 210 211 212 213 214 215
    auto merge_sequential_one_dims = [](bool &equal,
                                        std::vector<DimVector> &in_dims,
                                        DimVector &out,
                                        int i,
                                        int num) {
      equal = in_dims[0][i] == 1;
      if (equal) {
        for (int j = 1; j < num; ++j) {
          equal &= in_dims[j][i] == out[i];
        }
      }
    };
216 217 218 219 220 221
    int swap_idx = 0;
    int max_one_length = GetSequentialOneDimLength(&swap_idx);
    if (max_one_length > 1) {
      merge_ptr = merge_sequential_one_dims;
      MergeDimensions<MergeFunctor>(merge_ptr, N);
      std::swap(in_dims[swap_idx], in_dims[0]);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    }
  }
};

template <typename T, int VecSize, int Rank, bool IsBoundary = false>
__device__ __forceinline__ void LoadData(
    T *dst,
    const _ptr_ T *src,
    uint32_t block_offset,
    const kps::details::BroadcastConfig<Rank> &config,
    int numel,
    int num,
    int need_broadcast) {
  // numel : whole num of output
  // num: how many data will be deal with in this time
  if (need_broadcast) {
    kps::ReadDataBc<T, VecSize, 1, 1, Rank, IsBoundary>(
        dst, src, block_offset, config, numel);
  } else {
    kps::ReadData<T, VecSize, 1, 1, IsBoundary>(dst, src + block_offset, num);
  }
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          int Rank,
          bool IsBoundary = false>
__device__ void VectorizedBroadcastKernelImpl(
254 255 256
    const phi::Array<const _ptr_ InT *__restrict__, Arity> &ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
    const phi::Array<int, Arity> &use_broadcast,
257
    uint32_t numel,
258
    const phi::Array<kps::details::BroadcastConfig<Rank>, Arity> &configs,
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    int num,
    int block_offset,
    Functor func) {
  InT args[Arity][VecSize];
  ConditionalT<OutT, NumOuts> result[VecSize];

#pragma unroll
  for (int i = 0; i < Arity; i++) {
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
    LoadData<InT, VecSize, Rank, IsBoundary>(args[i],
                                             ins[i],
                                             block_offset,
                                             configs[i],
                                             numel,
                                             num,
                                             use_broadcast[i]);
  }
  constexpr bool kCallElementwiseAny =
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
278 279 280 281 282 283
  phi::funcs::ElementwisePrimitiveCaller<InT,
                                         ConditionalT<OutT, NumOuts>,
                                         VecSize,
                                         Functor,
                                         Arity,
                                         kCallElementwiseAny>()(
284 285
      func, args, result);

286
  phi::funcs::ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
287 288 289 290 291 292 293 294 295 296 297
      outs, result, block_offset, num);
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          int Rank>
__global__ void VectorizedBroadcastKernel(
298 299 300
    phi::Array<const _ptr_ InT *__restrict__, Arity> ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
    phi::Array<int, Arity> use_broadcast,
301
    uint32_t numel,
302
    phi::Array<kps::details::BroadcastConfig<Rank>, Arity> configs,
303 304 305 306 307 308
    int main_offset,
    int tail_tid,
    Functor func) {
  int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;

309
#ifdef PADDLE_WITH_XPU_KP
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
  for (; block_offset < main_offset; block_offset += stride) {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  Rank,
                                  false>(ins,
                                         outs,
                                         use_broadcast,
                                         numel,
                                         configs,
                                         BLOCK_NUM_X * VecSize,
                                         block_offset,
                                         func);
  }
  int num = numel - block_offset;
  if (num > 0) {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  Rank,
                                  true>(
        ins, outs, use_broadcast, numel, configs, num, block_offset, func);
  }
#else
  if (block_offset < main_offset) {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  Rank,
                                  false>(ins,
                                         outs,
                                         use_broadcast,
                                         numel,
                                         configs,
                                         BLOCK_NUM_X * VecSize,
                                         block_offset,
                                         func);
  } else {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  Rank,
                                  true>(
        ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
  }
#endif
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          int Rank>
void LaunchBroadcastKernel(const KPDevice &ctx,
                           const std::vector<const DenseTensor *> &ins,
                           std::vector<DenseTensor *> *outs,
                           Functor func,
                           DimensionsTransform merge_dims) {
  int numel = (*outs)[0]->numel();
383 384 385 386
  phi::Array<kps::details::BroadcastConfig<Rank>, Arity> configs;
  phi::Array<int, Arity> use_broadcast;
  phi::Array<const _ptr_ InT *__restrict__, Arity> ins_data;
  phi::Array<_ptr_ OutT *, NumOuts> outs_data;
387 388

  for (int i = 0; i < NumOuts; ++i) {
389
    outs_data[i] = (_ptr_ OutT *)(ctx.Alloc<OutT>((*outs)[i]));
390 391 392 393
  }

  for (int i = 0; i < Arity; i++) {
    use_broadcast[i] = (ins[i]->numel() != numel);
394
    ins_data[i] = (const _ptr_ InT *)(ins[i]->data<InT>());
395 396 397 398 399 400 401 402 403
    if (use_broadcast[i]) {
      // get the broadcast config,
      // if data shape is[m, n], then you should set data_dim = {n, m}
      // eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
      configs[i] = kps::details::BroadcastConfig<Rank>(
          merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
    }
  }

404
#ifdef PADDLE_WITH_XPU_KP
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
  const int threads = 64;
  const int blocks = 8;
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.x_context()->xpu_stream;
  VectorizedBroadcastKernel<InT,
                            OutT,
                            Functor,
                            Arity,
                            NumOuts,
                            VecSize,
                            Rank><<<blocks, threads, stream>>>(ins_data,
                                                               outs_data,
                                                               use_broadcast,
                                                               numel,
                                                               configs,
                                                               main_offset,
                                                               tail_tid,
                                                               func);
#else
  const int threads = 256;
  int blocks = ((numel + VecSize - 1) / VecSize + threads - 1) / threads;
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.stream();
  VectorizedBroadcastKernel<InT,
                            OutT,
                            Functor,
                            Arity,
                            NumOuts,
                            VecSize,
                            Rank><<<blocks, threads, 0, stream>>>(ins_data,
                                                                  outs_data,
                                                                  use_broadcast,
                                                                  numel,
                                                                  configs,
                                                                  main_offset,
                                                                  tail_tid,
                                                                  func);
#endif
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
void BroadcastKernelForDifferentDimSize(
    const KPDevice &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  const auto merge_dims = DimensionsTransform(ins, (*outs)[0]->dims(), axis);

#define CALL_BROADCAST_FOR_DIM_SIZE(rank)                                     \
  case rank: {                                                                \
    LaunchBroadcastKernel<InT, OutT, Functor, Arity, NumOuts, VecSize, rank>( \
        ctx, ins, outs, func, merge_dims);                                    \
  } break;

  switch (merge_dims.dim_size) {
    CALL_BROADCAST_FOR_DIM_SIZE(1);
    CALL_BROADCAST_FOR_DIM_SIZE(2);
    CALL_BROADCAST_FOR_DIM_SIZE(3);
    CALL_BROADCAST_FOR_DIM_SIZE(4);
    CALL_BROADCAST_FOR_DIM_SIZE(5);
    CALL_BROADCAST_FOR_DIM_SIZE(6);
    CALL_BROADCAST_FOR_DIM_SIZE(7);
    CALL_BROADCAST_FOR_DIM_SIZE(8);
    default: {
477
      PADDLE_THROW(phi::errors::InvalidArgument(
478 479 480
          "The maximum dimension of input tensor is expected to be less than "
          "%d, but recieved %d.",
          merge_dims.dim_size,
481
          phi::DDim::kMaxRank));
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    }
  }
#undef CALL_BROADCAST_FOR_DIM_SIZE
}

template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
void BroadcastKernelForDifferentVecSize(
    const KPDevice &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
503
                    phi::errors::InvalidArgument(
504 505 506 507 508 509 510
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
  PADDLE_ENFORCE_LE(kArity,
                    3,
511
                    phi::errors::InvalidArgument(
512 513 514 515 516
                        "Currently only broadcast of ternary is supported "
                        "and verified, but received %d.",
                        kArity));
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
517
                    phi::errors::InvalidArgument(
518 519 520 521 522 523 524 525 526 527 528
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));
  int in_vec_size = 4;
  int out_vec_size = 4;
  if (NumOuts > 1) {
    for (int i = 0; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
529
          phi::errors::InvalidArgument(
530 531 532 533
              "The shape of each output tensor shall be identical yet, but "
              "%d-th output tensor`s shape is not.",
              i));
      out_vec_size = std::min(
534
          phi::GetVectorizedSize<OutT>((*outs)[i]->data<OutT>()), out_vec_size);
535 536
    }
  } else {
537
    out_vec_size = phi::GetVectorizedSize<OutT>((*outs)[0]->data<OutT>());
538 539 540
  }

  for (auto *in : ins) {
541
    auto temp_size = phi::GetVectorizedSize<InT>(in->data<InT>());
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    in_vec_size = in->dims() == (*outs)[0]->dims()
                      ? std::min(temp_size, in_vec_size)
                      : in_vec_size;
  }
  int vec_size = std::min(out_vec_size, in_vec_size);

  switch (vec_size) {
    case 4: {
      BroadcastKernelForDifferentDimSize<InT,
                                         OutT,
                                         Functor,
                                         kArity,
                                         NumOuts,
                                         4>(ctx, ins, outs, axis, func);
      break;
    }
    case 2: {
      BroadcastKernelForDifferentDimSize<InT,
                                         OutT,
                                         Functor,
                                         kArity,
                                         NumOuts,
                                         2>(ctx, ins, outs, axis, func);
      break;
    }
    case 1: {
      BroadcastKernelForDifferentDimSize<InT,
                                         OutT,
                                         Functor,
                                         kArity,
                                         NumOuts,
                                         1>(ctx, ins, outs, axis, func);
      break;
    }
    default: {
577
      PADDLE_THROW(phi::errors::Unimplemented(
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
          "Unsupported vectorized size: %d!", vec_size));
      break;
    }
  }
}

template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
void BroadcastKernel(const KPDevice &ctx,
                     const std::vector<const DenseTensor *> &ins,
                     std::vector<DenseTensor *> *outs,
                     int axis,
                     Functor func) {
  std::vector<int> dims_size;
  bool no_broadcast_flag = true;
  for (auto *in : ins) {
    no_broadcast_flag &= ins[0]->dims() == in->dims();
    dims_size.emplace_back(in->dims().size());
  }

  if (ins.size() > 0 && outs->size() > 0) {
    no_broadcast_flag &= outs->at(0)->dims() == ins[0]->dims();
  }

  if (no_broadcast_flag) {
606
    phi::funcs::ElementwiseKernel<OutT, Functor, NumOuts>(ctx, ins, outs, func);
607 608 609 610 611 612 613 614 615 616
  } else {
    axis = axis == -1
               ? *std::max_element(dims_size.begin(), dims_size.end()) -
                     *std::min_element(dims_size.begin(), dims_size.end())
               : axis;
    BroadcastKernelForDifferentVecSize<ET, InT, OutT, Functor, NumOuts>(
        ctx, ins, outs, axis, func);
  }
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const GPUContext &dev_ctx,
                        const DenseTensor &x,
                        const DenseTensor &y,
                        int axis,
                        Functor func,
                        DenseTensor *z) {
  std::vector<const DenseTensor *> ins = {&x, &y};
  std::vector<DenseTensor *> outs = {z};
  z->mutable_data<OutType>(dev_ctx.GetPlace());
  BroadcastKernel<ElementwiseType::kBinary, T, OutType, Functor, 1>(
      dev_ctx, ins, &outs, axis, func);
}

631 632
#endif

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
template <typename DeviceContext,
          typename T,
          typename Functor,
          typename InverseFunctor>
void DefaultElementwiseOperator(const DeviceContext &dev_ctx,
                                const DenseTensor &x,
                                const DenseTensor &y,
                                DenseTensor *z,
                                int axis = -1) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  dev_ctx.template Alloc<T>(z);
  if (x_dims.size() >= y_dims.size()) {
    funcs::ElementwiseCompute<Functor, T>(dev_ctx, x, y, axis, Functor(), z);
  } else {
    funcs::ElementwiseCompute<InverseFunctor, T>(
        dev_ctx, x, y, axis, InverseFunctor(), z);
  }
}

653
}  // namespace funcs
654
}  // namespace phi