fused_attention_op.cc 28.7 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
17

L
Li Min 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class FusedAttentionOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
                   "FusedAttentionOp");

35 36 37 38 39 40 41
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      OP_INOUT_CHECK(ctx->HasOutput("LnMean"), "Output", "LnMean",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("LnVariance"), "Output", "LnVariance",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("LnOut"), "Output", "LnOut",
                     "FusedAttentionOp");
L
Li Min 已提交
42 43 44 45 46 47 48
    } else {
      OP_INOUT_CHECK(ctx->HasOutput("Ln2Mean"), "Output", "Ln2Mean",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("Ln2Variance"), "Output", "Ln2Variance",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("BiasDropoutResidualOut"), "Output",
                     "BiasDropoutResidualOut", "FusedAttentionOp");
49 50
    }

L
Li Min 已提交
51 52 53
    // qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
    OP_INOUT_CHECK(ctx->HasOutput("QKVOut"), "Output", "QKVOut",
                   "FusedAttentionOp");
54 55 56 57
    if (ctx->HasInput("QKVBias")) {
      OP_INOUT_CHECK(ctx->HasOutput("QKVBiasOut"), "Output", "QKVBiasOut",
                     "FusedAttentionOp");
    }
L
Li Min 已提交
58 59 60 61 62 63
    OP_INOUT_CHECK(ctx->HasOutput("TransposeOut2"), "Output", "TransposeOut2",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKOut"), "Output", "QKOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKTVOut"), "Output", "QKTVOut",
                   "FusedAttentionOp");
64

65 66 67 68
    if (ctx->HasInput("CacheKV")) {
      OP_INOUT_CHECK(ctx->HasOutput("CacheKVOut"), "Output", "CacheKVOut",
                     "FusedAttentionOp");
    }
69 70 71 72
    if (ctx->HasInput("SrcMask")) {
      OP_INOUT_CHECK(ctx->HasOutput("SrcMaskOut"), "Output", "SrcMaskOut",
                     "FusedAttentionOp");
    }
L
Li Min 已提交
73 74 75 76 77 78 79 80 81 82
    OP_INOUT_CHECK(ctx->HasOutput("SoftmaxOut"), "Output", "SoftmaxOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutMaskOut"), "Output",
                   "AttnDropoutMaskOut", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutOut"), "Output", "AttnDropoutOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("FMHAOut"), "Output", "FMHAOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("OutLinearOut"), "Output", "OutLinearOut",
                   "FusedAttentionOp");
L
Li Min 已提交
83

L
Li Min 已提交
84 85 86 87 88 89 90 91
    OP_INOUT_CHECK(ctx->HasOutput("DropoutMaskOut"), "Output", "DropoutMaskOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "FusedAttentionOp");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("QKVW");
92 93 94 95 96 97 98
    PADDLE_ENFORCE_EQ(
        x_dim.size(), 3,
        platform::errors::InvalidArgument("The dimensions of x must be 3"
                                          "(batch_size, seq_len, dim_embed),"
                                          "but received dimensions of"
                                          "Input is [%d]",
                                          x_dim.size()));
L
Li Min 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    PADDLE_ENFORCE_EQ(y_dim.size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimensions of qkv_weight must be 4"
                          "(3, num_head, dim_head, dim_embed),"
                          "but received dimensions of"
                          "Input is [%d]",
                          y_dim.size()));
    PADDLE_ENFORCE_EQ(x_dim[2], y_dim[3],
                      platform::errors::InvalidArgument(
                          "ShapeError: the dimension of x_dim[2] and y_dim[3]"
                          "must be equal. But received: the shape "
                          "of input x = [%s], and the shape of "
                          "input qkv_weight = [%s]",
                          x_dim, y_dim));

114 115 116 117 118 119 120 121
    if (ctx->Attrs().Get<int>("ring_id") == -1) {
      PADDLE_ENFORCE_EQ(y_dim[1] * y_dim[2], y_dim[3],
                        platform::errors::InvalidArgument(
                            "The dimensions of qkv_weight must be 4"
                            "(3, num_head, dim_head, dim_embed),"
                            "and must satisfy the limitations: "
                            "(num_head * dim_head == dim_embed)"));
    }
122

123 124 125 126
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim("LnMean", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnVariance", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnOut", ctx->GetInputDim("X"));
L
Li Min 已提交
127 128 129 130
    } else {
      ctx->SetOutputDim("Ln2Mean", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("Ln2Variance", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("BiasDropoutResidualOut", ctx->GetInputDim("X"));
131
    }
L
Li Min 已提交
132 133 134
    // [batch_size, seq_len, 3, num_head, head_size]
    ctx->SetOutputDim("QKVOut",
                      {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
135 136 137 138 139

    if (ctx->HasInput("QKVBias")) {
      ctx->SetOutputDim("QKVBiasOut",
                        {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
    }
L
Li Min 已提交
140 141 142
    // [3, batch_size, num_head, seq_len, head_size]
    ctx->SetOutputDim("TransposeOut2",
                      {y_dim[0], x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    // cache_seq_len + seq_len if cache else seq_len
    auto out_seq_len = x_dim[1];
    if (ctx->HasInput("CacheKV")) {
      // [2, batch_size, num_head, cache_seq_len, head_size]
      auto c_dim = ctx->GetInputDim("CacheKV");

      PADDLE_ENFORCE_EQ(
          c_dim.size(), 5,
          paddle::platform::errors::InvalidArgument(
              "The CacheKV must be 5 dims, but got %d", c_dim.size()));
      PADDLE_ENFORCE_EQ(c_dim[0], 2,
                        paddle::platform::errors::InvalidArgument(
                            "The first dim of CacheKV must be 2, but got %d",
                            c_dim[0]));  // 2
      PADDLE_ENFORCE_EQ(c_dim[1], x_dim[0],
                        paddle::platform::errors::InvalidArgument(
                            "The second dim of CacheKV must be equal with "
                            "batch size %d, but got %d",
                            x_dim[0], c_dim[1]));  // batch_size
      PADDLE_ENFORCE_EQ(c_dim[2], y_dim[1],
                        paddle::platform::errors::InvalidArgument(
                            "The third dim of CacheKV must be equal with num "
                            "head %d, but got %d",
                            y_dim[1], c_dim[2]));  // num_head
168 169 170 171 172 173 174 175 176
      // In compile stage, input seq_len can be -1, in that case
      // c_dim[3] may < 0 in while
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_GE(
            c_dim[3], 0,
            paddle::platform::errors::InvalidArgument(
                "The forth dim of CacheKV must be greater than 0, but got %d",
                c_dim[3]));  // cache_seq_len
      }
177 178 179 180 181 182 183 184 185 186 187 188 189 190
      PADDLE_ENFORCE_EQ(c_dim[4], y_dim[2],
                        paddle::platform::errors::InvalidArgument(
                            "The fifth dim of CacheKV must be equal with head "
                            "size %d, but got %d",
                            y_dim[2], c_dim[4]));  // head_size

      out_seq_len += c_dim[3];
      // [3, batch_size, num_head, cache_seq_len + seq_len, head_size]
      ctx->SetOutputDim("CacheKVOut",
                        {c_dim[0], c_dim[1], c_dim[2], out_seq_len, c_dim[4]});
    }

    // [batch, num_head, seq_len, out_seq_len]
    ctx->SetOutputDim("QKOut", {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
191 192

    if (ctx->HasInput("SrcMask")) {
193 194
      ctx->SetOutputDim("SrcMaskOut",
                        {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
195
    }
L
Li Min 已提交
196 197
    // the same as QKOut's shape.
    ctx->SetOutputDim("AttnDropoutOut",
198
                      {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
L
Li Min 已提交
199
    if (ctx->Attrs().Get<bool>("is_test") == false) {
L
Li Min 已提交
200
      ctx->SetOutputDim("AttnDropoutMaskOut",
201
                        {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
L
Li Min 已提交
202
    }
203 204
    ctx->SetOutputDim("SoftmaxOut",
                      {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
L
Li Min 已提交
205 206 207 208 209 210
    // [batch_size, num_heads, seq_len, head_dim]
    ctx->SetOutputDim("QKTVOut", {x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
    // [batch_size, seq_len, number of heads*head size]
    ctx->SetOutputDim("FMHAOut", {x_dim[0], x_dim[1], y_dim[1], y_dim[2]});
    ctx->SetOutputDim("OutLinearOut", ctx->GetInputDim("X"));

L
Li Min 已提交
211
    if (ctx->Attrs().Get<bool>("is_test") == false) {
L
Li Min 已提交
212 213
      ctx->SetOutputDim("DropoutMaskOut", ctx->GetInputDim("X"));
    }
L
Li Min 已提交
214

L
Li Min 已提交
215 216 217 218 219 220 221
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
222
    auto input_data_type = framework::TransToProtoVarType(input->dtype());
L
Li Min 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("LnScale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("LnBias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("QKVW", "The qkv weight tensor.");
240
    AddInput("QKVBias", "The qkv bias tensor.").AsDispensable();
241 242
    AddInput("CacheKV", "(optional) The cached KV for generation inference.")
        .AsDispensable();
L
Li Min 已提交
243 244 245
    AddInput("SrcMask", "(optional) The attention mask tensor in fmha.")
        .AsDispensable();
    AddInput("OutLinearW", "The out_linear weight tensor.");
246
    AddInput("OutLinearBias", "The out_linear bias tensor.").AsDispensable();
L
Li Min 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    AddInput("Ln2Scale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("Ln2Bias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddOutput("LnMean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("LnVariance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("LnOut", "The output of pre layer_norm.").AsIntermediate();
    AddOutput("QKVOut", "Result after qkv.").AsIntermediate();
    AddOutput("QKVBiasOut", "Result after qkv and bias op.").AsIntermediate();
    AddOutput("TransposeOut2", "Result in fmha.").AsIntermediate();
    AddOutput("QKOut", "Result in fmha.").AsIntermediate();
    AddOutput("QKTVOut", "Result in fmha.").AsIntermediate();
    AddOutput("SoftmaxOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutOut", "Result in fmha.").AsIntermediate();
    AddOutput("SrcMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("FMHAOut", "Result after fmha.").AsIntermediate();
    AddOutput("OutLinearOut", "Result after out_linear.").AsIntermediate();
    AddOutput("DropoutMaskOut", "The random sampled dropout mask.")
        .AsIntermediate();
    AddOutput("Ln2Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Ln2Variance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("BiasDropoutResidualOut",
              "Result of residual + dropout(src + bias).")
        .AsIntermediate();
278
    AddOutput("CacheKVOut", "The udpated cache KV.");
L
Li Min 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    AddOutput("Y", "Result after attention.");

    AddAttr<bool>("pre_layer_norm",
                  "if true, the attention op uses pre_layer_norm architecure, "
                  "else, uses post_layer_norm architecuture. "
                  "[default false].")
        .SetDefault(false);
    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
        });

    // for dropout in fmha.
    AddAttr<float>("attn_dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(
              drop_p >= 0.0f && drop_p <= 1.0f, true,
              platform::errors::InvalidArgument(
                  "'attn_dropout_rate' must be between 0.0 and 1.0."));
        });
L
Li Min 已提交
306
    AddAttr<bool>("is_test",
L
Li Min 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddAttr<bool>("attn_dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("attn_dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "attn_dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_rate)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
        "   inference: out = input * (1.0 - dropout_rate)"
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_rate )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("upscale_in_train")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });

    AddAttr<float>("dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'dropout_rate' must be between 0.0 and 1.0."));
        });
    AddAttr<bool>("dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "The meaning is the same as 'attn_dropout_implementation'.")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });
    AddAttr<float>("ln_epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &ln_epsilon) {
          PADDLE_ENFORCE_EQ(ln_epsilon >= 0.0f && ln_epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' of the second LayerNorm in Fused "
                                "attention op should be between"
                                "0.0 and 0.001, But received [%s].",
                                ln_epsilon));
        });
381 382 383 384
    AddAttr<int>(
        "ring_id",
        "ring id for tensor model parallel. distributed training and inference")
        .SetDefault(-1);
L
Li Min 已提交
385 386

    AddComment(R"DOC(
L
Li Min 已提交
387 388 389 390 391
  Add fused attention op whose logic is as follows:
  // @input: [batch_size, seq_len, 3, num_head, head_dim] 
  // @final_out: [batch_size, seq_len, num_heads, head_dim] 
  if (pre_layernorm)
    out = layer_norm(input);
L
Li Min 已提交
392 393
	out = compute_qkv(out) + bias;
	// fmha module
L
Li Min 已提交
394 395 396 397 398 399 400 401
  {
    out = transpose(out, perm=[2, 0, 3, 1, 4]);
    out = q * k^t;
    out = attn_mask + out;
    out = softmax(out);
    out = dropout(out);
    out = out * v;
    out = transpose(out, perm=[0, 2, 1, 3]);
L
Li Min 已提交
402
                
L
Li Min 已提交
403
  }
L
Li Min 已提交
404
	out = out_linear(out);
L
Li Min 已提交
405 406 407 408
  if (pre_layernorm)
    final_out = residual + dropout(bias + out);
  else
    final_out = layer_norm(residual + dropout(bias + out));
L
Li Min 已提交
409 410 411 412
    )DOC");
  }
};

413 414 415 416 417
class FusedAttentionGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
L
Li Min 已提交
418 419 420
    PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
                      platform::errors::InvalidArgument(
                          "GradOp is only callable when is_test is false"));
421

L
Li Min 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == false) {
      OP_INOUT_CHECK(ctx->HasInput("Ln2Mean"), "Input", "Ln2Mean",
                     "FusedAttentionGrad");
      OP_INOUT_CHECK(ctx->HasInput("Ln2Variance"), "Input", "Ln2Variance",
                     "FusedAttentionGrad");
      if (ctx->HasOutput(framework::GradVarName("Ln2Scale"))) {
        ctx->SetOutputDim(framework::GradVarName("Ln2Scale"),
                          ctx->GetInputDim("Ln2Scale"));
      }
      if (ctx->HasOutput(framework::GradVarName("Ln2Bias"))) {
        ctx->SetOutputDim(framework::GradVarName("Ln2Bias"),
                          ctx->GetInputDim("Ln2Bias"));
      }
    } else {
436 437 438 439
      OP_INOUT_CHECK(ctx->HasInput("LnMean"), "Input", "LnMean",
                     "FusedAttentionGrad");
      OP_INOUT_CHECK(ctx->HasInput("LnVariance"), "Input", "LnVariance",
                     "FusedAttentionGrad");
440 441 442
      OP_INOUT_CHECK(ctx->HasInput("LnOut"), "Input", "LnOut",
                     "FusedAttentionGrad");
    }
L
Li Min 已提交
443 444

    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionGrad");
445 446 447 448 449
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW",
                   "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
                   "FusedAttentionGrad");

450 451 452 453 454 455 456 457 458
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      if (ctx->HasOutput(framework::GradVarName("LnScale"))) {
        ctx->SetOutputDim(framework::GradVarName("LnScale"),
                          ctx->GetInputDim("LnScale"));
      }
      if (ctx->HasOutput(framework::GradVarName("LnBias"))) {
        ctx->SetOutputDim(framework::GradVarName("LnBias"),
                          ctx->GetInputDim("LnBias"));
      }
459 460 461 462
    }
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    }
463 464 465 466
    if (ctx->HasOutput(framework::GradVarName("OutLinearBias"))) {
      ctx->SetOutputDim(framework::GradVarName("OutLinearBias"),
                        ctx->GetInputDim("OutLinearBias"));
    }
467 468 469
    ctx->SetOutputDim(framework::GradVarName("OutLinearW"),
                      ctx->GetInputDim("OutLinearW"));
    ctx->SetOutputDim(framework::GradVarName("QKVW"), ctx->GetInputDim("QKVW"));
470 471 472 473
    if (ctx->HasOutput(framework::GradVarName("QKVBias"))) {
      ctx->SetOutputDim(framework::GradVarName("QKVBias"),
                        ctx->GetInputDim("QKVBias"));
    }
474

475 476 477
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim(framework::GradVarName("LnOut"),
                        ctx->GetInputDim("LnOut"));
L
Li Min 已提交
478 479 480
    } else {
      ctx->SetOutputDim(framework::GradVarName("BiasDropoutResidualOut"),
                        ctx->GetInputDim("BiasDropoutResidualOut"));
481
    }
482 483 484 485 486 487 488 489 490 491 492 493
    ctx->SetOutputDim(framework::GradVarName("FMHAOut"),
                      ctx->GetInputDim("FMHAOut"));
    ctx->SetOutputDim(framework::GradVarName("QKTVOut"),
                      ctx->GetInputDim("QKTVOut"));
    ctx->SetOutputDim(framework::GradVarName("TransposeOut2"),
                      ctx->GetInputDim("TransposeOut2"));
    ctx->SetOutputDim(framework::GradVarName("QKOut"),
                      ctx->GetInputDim("QKOut"));
    ctx->SetOutputDim(framework::GradVarName("SoftmaxOut"),
                      ctx->GetInputDim("SoftmaxOut"));
    ctx->SetOutputDim(framework::GradVarName("AttnDropoutOut"),
                      ctx->GetInputDim("AttnDropoutOut"));
494 495 496 497 498

    if (ctx->HasOutput(framework::GradVarName("SrcMaskOut"))) {
      ctx->SetOutputDim(framework::GradVarName("SrcMaskOut"),
                        ctx->GetInputDim("SrcMaskOut"));
    }
499 500
    ctx->SetOutputDim(framework::GradVarName("QKVOut"),
                      ctx->GetInputDim("QKVOut"));
501 502 503 504
    if (ctx->HasOutput(framework::GradVarName("QKVBiasOut"))) {
      ctx->SetOutputDim(framework::GradVarName("QKVBiasOut"),
                        ctx->GetInputDim("QKVBiasOut"));
    }
505 506 507 508 509 510 511 512
    ctx->SetOutputDim(framework::GradVarName("OutLinearOut"),
                      ctx->GetInputDim("OutLinearOut"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
513
    auto input_data_type = framework::TransToProtoVarType(input->dtype());
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("fused_attention_grad");
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    // inputs x, parameters and their grad.
    op->SetInput("X", this->Input("X"));
    op->SetInput("QKVW", this->Input("QKVW"));
531 532 533 534 535 536 537 538 539

    if (this->HasInput("QKVBias")) {
      op->SetInput("QKVBias", this->Input("QKVBias"));
      op->SetOutput(framework::GradVarName("QKVBias"),
                    this->InputGrad("QKVBias"));
      op->SetInput("QKVBiasOut", this->Output("QKVBiasOut"));
      op->SetOutput(framework::GradVarName("QKVBiasOut"),
                    this->OutputGrad("QKVBiasOut"));
    }
540 541 542 543 544 545 546 547

    if (this->HasInput("SrcMask")) {
      op->SetInput("SrcMask", this->Input("SrcMask"));
      op->SetInput("SrcMaskOut", this->Output("SrcMaskOut"));
      op->SetOutput(framework::GradVarName("SrcMaskOut"),
                    this->OutputGrad("SrcMaskOut"));
    }

548
    op->SetInput("OutLinearW", this->Input("OutLinearW"));
549 550 551 552 553
    if (this->HasInput("OutLinearBias")) {
      op->SetInput("OutLinearBias", this->Input("OutLinearBias"));
      op->SetOutput(framework::GradVarName("OutLinearBias"),
                    this->InputGrad("OutLinearBias"));
    }
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

    op->SetAttrMap(this->Attrs());
    bool is_pre_layer_norm =
        BOOST_GET_CONST(bool, op->GetAttr("pre_layer_norm"));
    if (is_pre_layer_norm) {
      if (this->HasInput("LnScale")) {
        op->SetInput("LnScale", this->Input("LnScale"));
        op->SetOutput(framework::GradVarName("LnScale"),
                      this->InputGrad("LnScale"));
      }
      if (this->HasInput("LnBias")) {
        op->SetInput("LnBias", this->Input("LnBias"));
        op->SetOutput(framework::GradVarName("LnBias"),
                      this->InputGrad("LnBias"));
      }
L
Li Min 已提交
569 570 571 572 573 574 575 576 577 578 579
    } else {
      if (this->HasInput("Ln2Scale")) {
        op->SetInput("Ln2Scale", this->Input("Ln2Scale"));
        op->SetOutput(framework::GradVarName("Ln2Scale"),
                      this->InputGrad("Ln2Scale"));
      }
      if (this->HasInput("Ln2Bias")) {
        op->SetInput("Ln2Bias", this->Input("Ln2Bias"));
        op->SetOutput(framework::GradVarName("Ln2Bias"),
                      this->InputGrad("Ln2Bias"));
      }
580 581 582 583
    }

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("QKVW"), this->InputGrad("QKVW"));
584

585 586 587 588
    op->SetOutput(framework::GradVarName("OutLinearW"),
                  this->InputGrad("OutLinearW"));

    // use forward outputs as backward inputs.
589 590 591 592 593 594 595 596 597 598
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetInput("LnOut", this->Output("LnOut"));
      }
      if (this->HasOutput("LnMean")) {
        op->SetInput("LnMean", this->Output("LnMean"));
      }
      if (this->HasOutput("LnVariance")) {
        op->SetInput("LnVariance", this->Output("LnVariance"));
      }
L
Li Min 已提交
599 600 601 602 603
    } else {
      op->SetInput("Ln2Mean", this->Output("Ln2Mean"));
      op->SetInput("Ln2Variance", this->Output("Ln2Variance"));
      op->SetInput("BiasDropoutResidualOut",
                   this->Output("BiasDropoutResidualOut"));
604
    }
605
    op->SetInput("QKVOut", this->Output("QKVOut"));
606

607 608 609 610 611 612
    op->SetInput("TransposeOut2", this->Output("TransposeOut2"));
    op->SetInput("QKOut", this->Output("QKOut"));
    op->SetInput("QKTVOut", this->Output("QKTVOut"));
    op->SetInput("SoftmaxOut", this->Output("SoftmaxOut"));
    op->SetInput("AttnDropoutMaskOut", this->Output("AttnDropoutMaskOut"));
    op->SetInput("AttnDropoutOut", this->Output("AttnDropoutOut"));
613

614 615 616 617 618 619
    op->SetInput("FMHAOut", this->Output("FMHAOut"));
    op->SetInput("OutLinearOut", this->Output("OutLinearOut"));
    op->SetInput("DropoutMaskOut", this->Output("DropoutMaskOut"));
    op->SetInput("QKVOut", this->Output("QKVOut"));

    // backward outputs: dinput
620 621 622 623 624
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetOutput(framework::GradVarName("LnOut"),
                      this->OutputGrad("LnOut"));
      }
L
Li Min 已提交
625 626 627
    } else {
      op->SetOutput(framework::GradVarName("BiasDropoutResidualOut"),
                    this->OutputGrad("BiasDropoutResidualOut"));
628
    }
L
Li Min 已提交
629

630
    op->SetOutput(framework::GradVarName("QKVOut"), this->OutputGrad("QKVOut"));
631

632 633 634 635 636 637 638 639 640
    op->SetOutput(framework::GradVarName("QKTVOut"),
                  this->OutputGrad("QKTVOut"));
    op->SetOutput(framework::GradVarName("TransposeOut2"),
                  this->OutputGrad("TransposeOut2"));
    op->SetOutput(framework::GradVarName("QKOut"), this->OutputGrad("QKOut"));
    op->SetOutput(framework::GradVarName("SoftmaxOut"),
                  this->OutputGrad("SoftmaxOut"));
    op->SetOutput(framework::GradVarName("AttnDropoutOut"),
                  this->OutputGrad("AttnDropoutOut"));
641

642 643 644 645 646 647 648
    op->SetOutput(framework::GradVarName("FMHAOut"),
                  this->OutputGrad("FMHAOut"));
    op->SetOutput(framework::GradVarName("OutLinearOut"),
                  this->OutputGrad("OutLinearOut"));
  }
};

L
Li Min 已提交
649 650 651 652 653
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_attention, ops::FusedAttentionOp,
654 655 656 657
                  ops::FusedAttentionOpMaker,
                  ops::FusedAttentionGradOpMaker<paddle::framework::OpDesc>,
                  ops::FusedAttentionGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_attention_grad, ops::FusedAttentionGradOp);