fused_attention_op.cc 25.7 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class FusedAttentionOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("QKVBias"), "Input", "QKVBias",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearBias"), "Input", "OutLinearBias",
                   "FusedAttentionOp");

38 39 40 41 42 43 44 45 46
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      OP_INOUT_CHECK(ctx->HasOutput("LnMean"), "Output", "LnMean",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("LnVariance"), "Output", "LnVariance",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("LnOut"), "Output", "LnOut",
                     "FusedAttentionOp");
    }

L
Li Min 已提交
47 48 49 50 51 52 53 54 55 56 57
    // qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
    OP_INOUT_CHECK(ctx->HasOutput("QKVOut"), "Output", "QKVOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKVBiasOut"), "Output", "QKVBiasOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("TransposeOut2"), "Output", "TransposeOut2",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKOut"), "Output", "QKOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKTVOut"), "Output", "QKTVOut",
                   "FusedAttentionOp");
58 59 60 61 62

    if (ctx->HasInput("SrcMask")) {
      OP_INOUT_CHECK(ctx->HasOutput("SrcMaskOut"), "Output", "SrcMaskOut",
                     "FusedAttentionOp");
    }
L
Li Min 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    OP_INOUT_CHECK(ctx->HasOutput("SoftmaxOut"), "Output", "SoftmaxOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutMaskOut"), "Output",
                   "AttnDropoutMaskOut", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutOut"), "Output", "AttnDropoutOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("FMHAOut"), "Output", "FMHAOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("OutLinearOut"), "Output", "OutLinearOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Ln2Mean"), "Output", "Ln2Mean",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Ln2Variance"), "Output", "Ln2Variance",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("BiasDropoutResidualOut"), "Output",
                   "BiasDropoutResidualOut", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("DropoutMaskOut"), "Output", "DropoutMaskOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "FusedAttentionOp");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("QKVW");
    PADDLE_ENFORCE_EQ(x_dim.size(), 3, platform::errors::InvalidArgument(
                                           "The dimensions of x must be 3"
                                           "(batch_size, seq_len, dim_embed),"
                                           "but received dimensions of"
                                           "Input is [%d]",
                                           x_dim.size()));
    PADDLE_ENFORCE_EQ(y_dim.size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimensions of qkv_weight must be 4"
                          "(3, num_head, dim_head, dim_embed),"
                          "but received dimensions of"
                          "Input is [%d]",
                          y_dim.size()));
    PADDLE_ENFORCE_EQ(x_dim[2], y_dim[3],
                      platform::errors::InvalidArgument(
                          "ShapeError: the dimension of x_dim[2] and y_dim[3]"
                          "must be equal. But received: the shape "
                          "of input x = [%s], and the shape of "
                          "input qkv_weight = [%s]",
                          x_dim, y_dim));

108 109 110 111 112
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim("LnMean", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnVariance", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnOut", ctx->GetInputDim("X"));
    }
L
Li Min 已提交
113 114 115 116 117 118 119 120 121 122
    // [batch_size, seq_len, 3, num_head, head_size]
    ctx->SetOutputDim("QKVOut",
                      {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
    ctx->SetOutputDim("QKVBiasOut",
                      {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
    // [3, batch_size, num_head, seq_len, head_size]
    ctx->SetOutputDim("TransposeOut2",
                      {y_dim[0], x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
    // [batch, num_head, seq_len, seq_len]
    ctx->SetOutputDim("QKOut", {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
123 124 125 126

    if (ctx->HasInput("SrcMask")) {
      ctx->SetOutputDim("SrcMaskOut", {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    }
L
Li Min 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    // the same as QKOut's shape.
    ctx->SetOutputDim("AttnDropoutOut",
                      {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    if (ctx->Attrs().Get<bool>("attn_dropout_is_test") == false) {
      ctx->SetOutputDim("AttnDropoutMaskOut",
                        {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    }
    ctx->SetOutputDim("SoftmaxOut", {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    // [batch_size, num_heads, seq_len, head_dim]
    ctx->SetOutputDim("QKTVOut", {x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
    // [batch_size, seq_len, number of heads*head size]
    ctx->SetOutputDim("FMHAOut", {x_dim[0], x_dim[1], y_dim[1], y_dim[2]});
    ctx->SetOutputDim("OutLinearOut", ctx->GetInputDim("X"));

    ctx->SetOutputDim("Ln2Mean", {x_dim[0] * x_dim[1]});
    ctx->SetOutputDim("Ln2Variance", {x_dim[0] * x_dim[1]});
    if (ctx->Attrs().Get<bool>("dropout_is_test") == false) {
      ctx->SetOutputDim("DropoutMaskOut", ctx->GetInputDim("X"));
    }
    ctx->SetOutputDim("BiasDropoutResidualOut", ctx->GetInputDim("X"));
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
    auto input_data_type = input->type();
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("LnScale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("LnBias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("QKVW", "The qkv weight tensor.");
    AddInput("QKVBias", "The qkv bias tensor.");
    AddInput("SrcMask", "(optional) The attention mask tensor in fmha.")
        .AsDispensable();
    AddInput("OutLinearW", "The out_linear weight tensor.");
    AddInput("OutLinearBias", "The out_linear bias tensor.");
    AddInput("Ln2Scale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("Ln2Bias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddOutput("LnMean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("LnVariance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("LnOut", "The output of pre layer_norm.").AsIntermediate();
    AddOutput("QKVOut", "Result after qkv.").AsIntermediate();
    AddOutput("QKVBiasOut", "Result after qkv and bias op.").AsIntermediate();
    AddOutput("TransposeOut2", "Result in fmha.").AsIntermediate();
    AddOutput("QKOut", "Result in fmha.").AsIntermediate();
    AddOutput("QKTVOut", "Result in fmha.").AsIntermediate();
    AddOutput("SoftmaxOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutOut", "Result in fmha.").AsIntermediate();
    AddOutput("SrcMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("FMHAOut", "Result after fmha.").AsIntermediate();
    AddOutput("OutLinearOut", "Result after out_linear.").AsIntermediate();
    AddOutput("DropoutMaskOut", "The random sampled dropout mask.")
        .AsIntermediate();
    AddOutput("Ln2Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Ln2Variance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("BiasDropoutResidualOut",
              "Result of residual + dropout(src + bias).")
        .AsIntermediate();
    AddOutput("Y", "Result after attention.");

    AddAttr<bool>("pre_layer_norm",
                  "if true, the attention op uses pre_layer_norm architecure, "
                  "else, uses post_layer_norm architecuture. "
                  "[default false].")
        .SetDefault(false);
    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
        });

    // for dropout in fmha.
    AddAttr<float>("attn_dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(
              drop_p >= 0.0f && drop_p <= 1.0f, true,
              platform::errors::InvalidArgument(
                  "'attn_dropout_rate' must be between 0.0 and 1.0."));
        });
    AddAttr<bool>("attn_dropout_is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddAttr<bool>("attn_dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("attn_dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "attn_dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_rate)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
        "   inference: out = input * (1.0 - dropout_rate)"
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_rate )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("upscale_in_train")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });

    AddAttr<float>("dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'dropout_rate' must be between 0.0 and 1.0."));
        });

    AddAttr<bool>("dropout_is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddAttr<bool>("dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "The meaning is the same as 'attn_dropout_implementation'.")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });
    AddAttr<float>("ln_epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &ln_epsilon) {
          PADDLE_ENFORCE_EQ(ln_epsilon >= 0.0f && ln_epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' of the second LayerNorm in Fused "
                                "attention op should be between"
                                "0.0 and 0.001, But received [%s].",
                                ln_epsilon));
        });

    AddComment(R"DOC(
    	Add fused attention op whose logic is as follows:
        // @input: [batch_size, seq_len, 3, num_head, head_dim] 
        // @final_out: [batch_size, seq_len, num_heads, head_dim] 
   	if (pre_layernorm)
    	    out = layer_norm(input);
	out = compute_qkv(out) + bias;
	// fmha module
	{
            out = transpose(out, perm=[2, 0, 3, 1, 4]);
            out = q * k^t;
327
            out = attn_mask + out;
L
Li Min 已提交
328 329 330 331 332 333 334 335 336 337 338 339
            out = softmax(out);
            out = dropout(out);
            out = out * v;
            out = transpose(out, perm=[0, 2, 1, 3]);
                
        }
	out = out_linear(out);
	final_out = layer_norm(residual + dropout(bias + out));
    )DOC");
  }
};

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
class FusedAttentionGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->Attrs().Get<bool>("attn_dropout_is_test"), false,
        platform::errors::InvalidArgument(
            "GradOp is only callable when attn_dropout_is_test is false"));

    OP_INOUT_CHECK(ctx->HasInput("Ln2Mean"), "Input", "Ln2Mean",
                   "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("Ln2Variance"), "Input", "Ln2Variance",
                   "FusedAttentionGrad");
    if (ctx->HasOutput(framework::GradVarName("Ln2Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Ln2Scale"),
                        ctx->GetInputDim("Ln2Scale"));
    }
    if (ctx->HasOutput(framework::GradVarName("Ln2Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Ln2Bias"),
                        ctx->GetInputDim("Ln2Bias"));
    }
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionGrad");
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
364 365 366 367
      OP_INOUT_CHECK(ctx->HasInput("LnMean"), "Input", "LnMean",
                     "FusedAttentionGrad");
      OP_INOUT_CHECK(ctx->HasInput("LnVariance"), "Input", "LnVariance",
                     "FusedAttentionGrad");
368 369 370 371 372 373 374 375 376 377 378 379
      OP_INOUT_CHECK(ctx->HasInput("LnOut"), "Input", "LnOut",
                     "FusedAttentionGrad");
    }
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW",
                   "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("QKVBias"), "Input", "QKVBias",
                   "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
                   "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearBias"), "Input", "OutLinearBias",
                   "FusedAttentionGrad");

380 381 382 383 384 385 386 387 388
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      if (ctx->HasOutput(framework::GradVarName("LnScale"))) {
        ctx->SetOutputDim(framework::GradVarName("LnScale"),
                          ctx->GetInputDim("LnScale"));
      }
      if (ctx->HasOutput(framework::GradVarName("LnBias"))) {
        ctx->SetOutputDim(framework::GradVarName("LnBias"),
                          ctx->GetInputDim("LnBias"));
      }
389 390 391 392 393 394 395 396 397 398 399 400 401
    }
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    }

    ctx->SetOutputDim(framework::GradVarName("OutLinearBias"),
                      ctx->GetInputDim("OutLinearBias"));
    ctx->SetOutputDim(framework::GradVarName("OutLinearW"),
                      ctx->GetInputDim("OutLinearW"));
    ctx->SetOutputDim(framework::GradVarName("QKVW"), ctx->GetInputDim("QKVW"));
    ctx->SetOutputDim(framework::GradVarName("QKVBias"),
                      ctx->GetInputDim("QKVBias"));

402 403 404 405
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim(framework::GradVarName("LnOut"),
                        ctx->GetInputDim("LnOut"));
    }
406 407 408 409 410 411 412 413 414 415 416 417
    ctx->SetOutputDim(framework::GradVarName("FMHAOut"),
                      ctx->GetInputDim("FMHAOut"));
    ctx->SetOutputDim(framework::GradVarName("QKTVOut"),
                      ctx->GetInputDim("QKTVOut"));
    ctx->SetOutputDim(framework::GradVarName("TransposeOut2"),
                      ctx->GetInputDim("TransposeOut2"));
    ctx->SetOutputDim(framework::GradVarName("QKOut"),
                      ctx->GetInputDim("QKOut"));
    ctx->SetOutputDim(framework::GradVarName("SoftmaxOut"),
                      ctx->GetInputDim("SoftmaxOut"));
    ctx->SetOutputDim(framework::GradVarName("AttnDropoutOut"),
                      ctx->GetInputDim("AttnDropoutOut"));
418 419 420 421 422

    if (ctx->HasOutput(framework::GradVarName("SrcMaskOut"))) {
      ctx->SetOutputDim(framework::GradVarName("SrcMaskOut"),
                        ctx->GetInputDim("SrcMaskOut"));
    }
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    ctx->SetOutputDim(framework::GradVarName("QKVOut"),
                      ctx->GetInputDim("QKVOut"));
    ctx->SetOutputDim(framework::GradVarName("QKVBiasOut"),
                      ctx->GetInputDim("QKVBiasOut"));
    ctx->SetOutputDim(framework::GradVarName("OutLinearOut"),
                      ctx->GetInputDim("OutLinearOut"));
    ctx->SetOutputDim(framework::GradVarName("BiasDropoutResidualOut"),
                      ctx->GetInputDim("BiasDropoutResidualOut"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
    auto input_data_type = input->type();
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("fused_attention_grad");
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    // inputs x, parameters and their grad.
    op->SetInput("X", this->Input("X"));
    op->SetInput("QKVW", this->Input("QKVW"));
    op->SetInput("QKVBias", this->Input("QKVBias"));
456 457 458 459 460 461 462 463

    if (this->HasInput("SrcMask")) {
      op->SetInput("SrcMask", this->Input("SrcMask"));
      op->SetInput("SrcMaskOut", this->Output("SrcMaskOut"));
      op->SetOutput(framework::GradVarName("SrcMaskOut"),
                    this->OutputGrad("SrcMaskOut"));
    }

464 465
    op->SetInput("OutLinearW", this->Input("OutLinearW"));
    op->SetInput("OutLinearBias", this->Input("OutLinearBias"));
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

    op->SetAttrMap(this->Attrs());
    bool is_pre_layer_norm =
        BOOST_GET_CONST(bool, op->GetAttr("pre_layer_norm"));
    if (is_pre_layer_norm) {
      if (this->HasInput("LnScale")) {
        op->SetInput("LnScale", this->Input("LnScale"));
        op->SetOutput(framework::GradVarName("LnScale"),
                      this->InputGrad("LnScale"));
      }
      if (this->HasInput("LnBias")) {
        op->SetInput("LnBias", this->Input("LnBias"));
        op->SetOutput(framework::GradVarName("LnBias"),
                      this->InputGrad("LnBias"));
      }
481
    }
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    if (this->HasInput("Ln2Scale")) {
      op->SetInput("Ln2Scale", this->Input("Ln2Scale"));
      op->SetOutput(framework::GradVarName("Ln2Scale"),
                    this->InputGrad("Ln2Scale"));
    }
    if (this->HasInput("Ln2Bias")) {
      op->SetInput("Ln2Bias", this->Input("Ln2Bias"));
      op->SetOutput(framework::GradVarName("Ln2Bias"),
                    this->InputGrad("Ln2Bias"));
    }

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("QKVW"), this->InputGrad("QKVW"));
    op->SetOutput(framework::GradVarName("QKVBias"),
                  this->InputGrad("QKVBias"));
    op->SetOutput(framework::GradVarName("OutLinearBias"),
                  this->InputGrad("OutLinearBias"));
    op->SetOutput(framework::GradVarName("OutLinearW"),
                  this->InputGrad("OutLinearW"));

    // use forward outputs as backward inputs.
504 505 506 507 508 509 510 511 512 513 514
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetInput("LnOut", this->Output("LnOut"));
      }
      if (this->HasOutput("LnMean")) {
        op->SetInput("LnMean", this->Output("LnMean"));
      }
      if (this->HasOutput("LnVariance")) {
        op->SetInput("LnVariance", this->Output("LnVariance"));
      }
    }
515 516 517 518 519 520 521 522
    op->SetInput("QKVOut", this->Output("QKVOut"));
    op->SetInput("QKVBiasOut", this->Output("QKVBiasOut"));
    op->SetInput("TransposeOut2", this->Output("TransposeOut2"));
    op->SetInput("QKOut", this->Output("QKOut"));
    op->SetInput("QKTVOut", this->Output("QKTVOut"));
    op->SetInput("SoftmaxOut", this->Output("SoftmaxOut"));
    op->SetInput("AttnDropoutMaskOut", this->Output("AttnDropoutMaskOut"));
    op->SetInput("AttnDropoutOut", this->Output("AttnDropoutOut"));
523

524 525 526 527 528 529 530 531 532 533 534
    op->SetInput("FMHAOut", this->Output("FMHAOut"));
    op->SetInput("OutLinearOut", this->Output("OutLinearOut"));

    op->SetInput("Ln2Mean", this->Output("Ln2Mean"));
    op->SetInput("Ln2Variance", this->Output("Ln2Variance"));
    op->SetInput("DropoutMaskOut", this->Output("DropoutMaskOut"));
    op->SetInput("BiasDropoutResidualOut",
                 this->Output("BiasDropoutResidualOut"));
    op->SetInput("QKVOut", this->Output("QKVOut"));

    // backward outputs: dinput
535 536 537 538 539 540
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetOutput(framework::GradVarName("LnOut"),
                      this->OutputGrad("LnOut"));
      }
    }
541 542 543 544 545 546 547 548 549 550 551 552
    op->SetOutput(framework::GradVarName("QKVOut"), this->OutputGrad("QKVOut"));
    op->SetOutput(framework::GradVarName("QKVBiasOut"),
                  this->OutputGrad("QKVBiasOut"));
    op->SetOutput(framework::GradVarName("QKTVOut"),
                  this->OutputGrad("QKTVOut"));
    op->SetOutput(framework::GradVarName("TransposeOut2"),
                  this->OutputGrad("TransposeOut2"));
    op->SetOutput(framework::GradVarName("QKOut"), this->OutputGrad("QKOut"));
    op->SetOutput(framework::GradVarName("SoftmaxOut"),
                  this->OutputGrad("SoftmaxOut"));
    op->SetOutput(framework::GradVarName("AttnDropoutOut"),
                  this->OutputGrad("AttnDropoutOut"));
553

554 555 556 557 558 559 560 561 562
    op->SetOutput(framework::GradVarName("FMHAOut"),
                  this->OutputGrad("FMHAOut"));
    op->SetOutput(framework::GradVarName("BiasDropoutResidualOut"),
                  this->OutputGrad("BiasDropoutResidualOut"));
    op->SetOutput(framework::GradVarName("OutLinearOut"),
                  this->OutputGrad("OutLinearOut"));
  }
};

L
Li Min 已提交
563 564 565 566 567
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_attention, ops::FusedAttentionOp,
568 569 570 571
                  ops::FusedAttentionOpMaker,
                  ops::FusedAttentionGradOpMaker<paddle::framework::OpDesc>,
                  ops::FusedAttentionGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_attention_grad, ops::FusedAttentionGradOp);