LayerGradUtil.h 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "ModelConfig.pb.h"
Y
Yu Yang 已提交
17 18
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/trainer/Trainer.h"
Z
zhangjinchao01 已提交
19

20
#include "paddle/testing/TestUtil.h"
Z
zhangjinchao01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
using namespace std;  // NOLINT

namespace paddle {
enum InputType {
  INPUT_DATA,         // dense vector
  INPUT_LABEL,        // id
  INPUT_DATA_TARGET,  // dense vector, but no gradient
  INPUT_SEQUENCE_DATA,
  INPUT_HASSUB_SEQUENCE_DATA,  // sequence has sub-sequence
  INPUT_SEQUENCE_MDIM_DATA,
  INPUT_SEQUENCE_LABEL,
  INPUT_SPARSE_NON_VALUE_DATA,
  INPUT_SPARSE_FLOAT_VALUE_DATA,
34 35
  INPUT_DENSE_DIM_DATA,    // using sequence length to init dense data
  INPUT_SELF_DEFINE_DATA,  // support customizing for input value
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
};

struct ParaSparse {
  bool sparse;
  string format;
  // if equalNnzPerSample is set true,
  // every row of the sparse matrix in a format of CSR has a same
  // number of nnz values. Currently, this flag is only used for
  // selective_fc layer
  bool equalNnzPerSample;
  ParaSparse(const string& formatIn = "") {  // NOLINT
    if (formatIn == "") {
      sparse = false;
    } else {
      sparse = true;
    }
    equalNnzPerSample = false;
  }
  ParaSparse(const string& formatIn, bool equalNnz) {
    format = formatIn;
    sparse = true;
    equalNnzPerSample = equalNnz;
  }
};

struct InputDef {
  InputType inputType;
  string name;
  size_t dim;
  size_t paraSize;
  ParaSparse sparse;
  bool isStatic;
68 69
  std::vector<int> labelInitValue;
  std::vector<int> labelSeqStartPositions;
70
  MatrixPtr selfDefinedData;
71

Z
zhangjinchao01 已提交
72 73 74 75 76 77 78 79
  InputDef(InputType type, string nameIn, size_t dimIn, size_t sizeIn) {
    inputType = type;
    name = nameIn;
    dim = dimIn;
    paraSize = sizeIn;
    sparse = {""};
    isStatic = false;
  }
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94
  InputDef(InputType type,
           string nameIn,
           MatrixPtr selfDefinedData,
           std::vector<int> selfDefinedSeqStartPos = {})
      : labelSeqStartPositions(selfDefinedSeqStartPos),
        selfDefinedData(selfDefinedData) {
    inputType = type;
    name = nameIn;
    dim = 0;
    sparse = {""};
    paraSize = 0;
    isStatic = false;
  }

95 96 97 98
  InputDef(InputType type,
           string nameIn,
           size_t dimIn,
           size_t sizeIn,
99 100
           const std::vector<int>& labelInitValue,
           const std::vector<int>& labelSeqStartPositions)
101 102 103 104 105 106 107 108 109 110
      : labelInitValue(labelInitValue),
        labelSeqStartPositions(labelSeqStartPositions) {
    inputType = type;
    name = nameIn;
    dim = dimIn;
    paraSize = sizeIn;
    sparse = {""};
    isStatic = false;
  }

111 112 113 114
  InputDef(InputType type,
           string nameIn,
           size_t dimIn,
           size_t sizeIn,
Z
zhangjinchao01 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127
           ParaSparse sparseIn) {
    inputType = type;
    name = nameIn;
    dim = dimIn;
    paraSize = sizeIn;
    sparse = sparseIn;
  }
};

struct TestConfig {
  LayerConfig layerConfig;
  std::vector<InputDef> inputDefs;
  size_t biasSize;
Y
yangyaming 已提交
128 129
  real paramInitialMean;
  real paramInitialStd;
Z
zhangjinchao01 已提交
130 131 132 133 134 135
  bool testAccumulate;
  bool testState;
  bool staticBias;
  bool testBatchState;
  TestConfig()
      : biasSize(0),
Y
yangyaming 已提交
136 137
        paramInitialMean(0.0),
        paramInitialStd(1.0),
Z
zhangjinchao01 已提交
138 139 140 141 142 143
        testAccumulate(true),
        testState(false),
        staticBias(false),
        testBatchState(false) {}
};

144 145 146 147
real getCostSum(ParameterPtr& parameter,
                CpuVector& cpuPara,
                LayerPtr& testLayer,
                MatrixPtr weights = nullptr);
Z
zhangjinchao01 已提交
148

149 150 151 152 153 154 155
real getDiffAndPrint(real newCost1,
                     real newCost2,
                     real callbackCount,
                     char fill,
                     string testLayerName,
                     string name,
                     real step,
Z
zhangjinchao01 已提交
156 157 158 159 160 161 162 163 164 165
                     real delta);

/**
 * @brief verify that sequentially running forward() one timestamp at one time
 *        has same result as running forward() with one whole sequence
 *
 * @param testLayer[in/out]    testLayer
 * @param dataLayers[in/out]   dataLayers
 * @param datas[in/out]        data of dataLayers
 */
166 167
void testState(LayerPtr testLayer,
               vector<DataLayerPtr>& dataLayers,
Z
zhangjinchao01 已提交
168 169 170 171 172 173 174 175 176 177
               vector<Argument>& datas);

/**
 * @brief verify that sequentially running forward() with short sequences one
 *        time has same result as running forward() with long sequences.
 *
 * @param testLayer[in/out]    testLayer
 * @param dataLayers[in/out]   dataLayers
 * @param datas[in/out]        data of dataLayers
 */
178 179
void testBatchState(LayerPtr testLayer,
                    vector<DataLayerPtr>& dataLayers,
Z
zhangjinchao01 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                    vector<Argument>& datas);

/**
 * @brief Generate a perturbation so that it is roughly aligned with the
 *        gradient direction. This is to make sure that change along this
 *        direction will make cost increase (or decrease) in a meaningful
 *        way so that the finite difference can be used to approximate the
 *        directional dirivative well.
 *
 * @param oldGrad[in]  input gradient
 *        newGrad[out] output gradient
 *        dim          dimension of oldGrad/newGrad
 *
 * @return sum_i(oldGrad[i] * newGrad[i])
 */
double genPerturbation(const real* oldGrad, real* newGrad, size_t dim);

void initWeight(MatrixPtr& weights);

199 200 201 202
void initBatchState(LayerPtr dataLayer,
                    LayerPtr testLayer,
                    LayerStatePtr state,
                    bool useGpu);
Z
zhangjinchao01 已提交
203 204 205 206 207 208 209 210 211

/**
 * @brief initialize the dataLayer by its inputType
 *
 * @param testConf[in]        test config
 *        dataLayers[out]     dataLayers
 *        datas[out]          initialized data of dataLayers
 *        layerMap[out]       layerMap
 */
212 213 214 215 216 217 218
void initDataLayer(TestConfig testConf,
                   std::vector<DataLayerPtr>* dataLayers,
                   vector<Argument>* datas,
                   LayerMap* layerMap,
                   string testLayerName,
                   size_t batchSize,
                   bool trans,
Z
zhangjinchao01 已提交
219 220 221 222 223 224 225 226 227 228
                   bool useGpu);

/**
 * @brief initialize the parameter of testLayer
 *
 * @param testConf[in/out]    test config
 *        layerMap[out]       layerMap
 *        parameters[out]     parameters of testLayer
 *        testLayer[out]      testLayer
 */
229 230 231 232
void initTestLayer(TestConfig testConf,
                   LayerMap* layerMap,
                   std::vector<ParameterPtr>* parameters,
                   LayerPtr* testLayer);
Z
zhangjinchao01 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246

/**
 * @brief Test whether the layer's forward calculation is stable by adding
 *        perturbation to its parameters
 *
 * @param testConf[in]         test config
 *        weights[in]          weights of testLayer
 *        state[in]            state of testLayer
 *        cost[in]             input cost
 *        callbackCount[in]    number of done callback
 *        maxDiff[in/out]      max of all previous diff
 *        testLayer[in/out]    testLayer
 *        parameters[in/out]   parameters of testLayer
 */
247 248 249 250 251 252 253
void testPerturbParameter(TestConfig testConf,
                          const MatrixPtr weights,
                          const LayerStatePtr state,
                          real cost,
                          real callbackCount,
                          real* maxDiff,
                          LayerPtr testLayer,
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
                          std::vector<ParameterPtr>* parameters);

/**
 * @brief Test whether the layer's forward calculation is stable by adding
 *        perturbation to its input layers
 *
 * @param testConf[in]         test config
 *        weights[in]          weights of testLayer
 *        state[in]            state of testLayer
 *        cost[in]             input cost
 *        callbackCount[in]    number of done callback
 *        maxDiff[in/out]      max of all previous diff
 *        testLayer[in/out]    testLayer
 *        dataLayers[in/out]   dataLayers
 */
269 270 271 272 273 274 275
void testPerturbInput(TestConfig testConf,
                      const MatrixPtr weights,
                      const LayerStatePtr state,
                      real cost,
                      real callbackCount,
                      real* maxDiff,
                      LayerPtr testLayer,
Z
zhangjinchao01 已提交
276 277
                      std::vector<DataLayerPtr> dataLayers);

278 279 280 281 282 283 284
void testLayerGradKernel(TestConfig testConf,
                         string testLayerName,
                         size_t batchSize,
                         bool trans,
                         bool useGpu,
                         bool useWeight = false,
                         float epsilon = 0.02);
Z
zhangjinchao01 已提交
285

286 287 288 289 290 291
void testLayerGrad(TestConfig testConf,
                   string testLayerName,
                   size_t batchSize,
                   bool trans,
                   bool useGpu,
                   bool useWeight = false,
Z
zhangjinchao01 已提交
292 293
                   float epsilon = 0.02);

294 295 296 297 298 299 300
void testProjectionGrad(ProjectionConfig conf,
                        InputType inputType,
                        size_t parameterSize,
                        size_t batchSize,
                        bool useGpu,
                        bool testState = false,
                        int biasSize = 0,
301
                        bool sharedBias = false);
Z
zhangjinchao01 已提交
302

303 304 305 306 307
void testOperatorGrad(TestConfig& config,
                      OperatorConfig& operatorConf,
                      size_t batchSize,
                      bool useGpu,
                      bool testState = false);
Z
zhangjinchao01 已提交
308 309

}  //  namespace paddle