LayerGradUtil.h 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/trainer/Trainer.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "ModelConfig.pb.h"

#include "TestUtil.h"
using namespace std;  // NOLINT

namespace paddle {
enum InputType {
  INPUT_DATA,         // dense vector
  INPUT_LABEL,        // id
  INPUT_DATA_TARGET,  // dense vector, but no gradient
  INPUT_SEQUENCE_DATA,
  INPUT_HASSUB_SEQUENCE_DATA,  // sequence has sub-sequence
  INPUT_SEQUENCE_MDIM_DATA,
  INPUT_SEQUENCE_LABEL,
  INPUT_SPARSE_NON_VALUE_DATA,
  INPUT_SPARSE_FLOAT_VALUE_DATA,
  INPUT_DENSE_DIM_DATA,  // using sequence length to init dense data
};

struct ParaSparse {
  bool sparse;
  string format;
  // if equalNnzPerSample is set true,
  // every row of the sparse matrix in a format of CSR has a same
  // number of nnz values. Currently, this flag is only used for
  // selective_fc layer
  bool equalNnzPerSample;
  ParaSparse(const string& formatIn = "") {  // NOLINT
    if (formatIn == "") {
      sparse = false;
    } else {
      sparse = true;
    }
    equalNnzPerSample = false;
  }
  ParaSparse(const string& formatIn, bool equalNnz) {
    format = formatIn;
    sparse = true;
    equalNnzPerSample = equalNnz;
  }
};

struct InputDef {
  InputType inputType;
  string name;
  size_t dim;
  size_t paraSize;
  ParaSparse sparse;
  bool isStatic;
  InputDef(InputType type, string nameIn, size_t dimIn, size_t sizeIn) {
    inputType = type;
    name = nameIn;
    dim = dimIn;
    paraSize = sizeIn;
    sparse = {""};
    isStatic = false;
  }
75 76 77 78
  InputDef(InputType type,
           string nameIn,
           size_t dimIn,
           size_t sizeIn,
Z
zhangjinchao01 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
           ParaSparse sparseIn) {
    inputType = type;
    name = nameIn;
    dim = dimIn;
    paraSize = sizeIn;
    sparse = sparseIn;
  }
};

struct TestConfig {
  LayerConfig layerConfig;
  std::vector<InputDef> inputDefs;
  size_t biasSize;
  bool testAccumulate;
  bool testState;
  bool staticBias;
  bool testBatchState;
  TestConfig()
      : biasSize(0),
        testAccumulate(true),
        testState(false),
        staticBias(false),
        testBatchState(false) {}
};

104 105 106 107
real getCostSum(ParameterPtr& parameter,
                CpuVector& cpuPara,
                LayerPtr& testLayer,
                MatrixPtr weights = nullptr);
Z
zhangjinchao01 已提交
108

109 110 111 112 113 114 115
real getDiffAndPrint(real newCost1,
                     real newCost2,
                     real callbackCount,
                     char fill,
                     string testLayerName,
                     string name,
                     real step,
Z
zhangjinchao01 已提交
116 117 118 119 120 121 122 123 124 125
                     real delta);

/**
 * @brief verify that sequentially running forward() one timestamp at one time
 *        has same result as running forward() with one whole sequence
 *
 * @param testLayer[in/out]    testLayer
 * @param dataLayers[in/out]   dataLayers
 * @param datas[in/out]        data of dataLayers
 */
126 127
void testState(LayerPtr testLayer,
               vector<DataLayerPtr>& dataLayers,
Z
zhangjinchao01 已提交
128 129 130 131 132 133 134 135 136 137
               vector<Argument>& datas);

/**
 * @brief verify that sequentially running forward() with short sequences one
 *        time has same result as running forward() with long sequences.
 *
 * @param testLayer[in/out]    testLayer
 * @param dataLayers[in/out]   dataLayers
 * @param datas[in/out]        data of dataLayers
 */
138 139
void testBatchState(LayerPtr testLayer,
                    vector<DataLayerPtr>& dataLayers,
Z
zhangjinchao01 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                    vector<Argument>& datas);

/**
 * @brief Generate a perturbation so that it is roughly aligned with the
 *        gradient direction. This is to make sure that change along this
 *        direction will make cost increase (or decrease) in a meaningful
 *        way so that the finite difference can be used to approximate the
 *        directional dirivative well.
 *
 * @param oldGrad[in]  input gradient
 *        newGrad[out] output gradient
 *        dim          dimension of oldGrad/newGrad
 *
 * @return sum_i(oldGrad[i] * newGrad[i])
 */
double genPerturbation(const real* oldGrad, real* newGrad, size_t dim);

void initWeight(MatrixPtr& weights);

159 160 161 162
void initBatchState(LayerPtr dataLayer,
                    LayerPtr testLayer,
                    LayerStatePtr state,
                    bool useGpu);
Z
zhangjinchao01 已提交
163 164 165 166 167 168 169 170 171

/**
 * @brief initialize the dataLayer by its inputType
 *
 * @param testConf[in]        test config
 *        dataLayers[out]     dataLayers
 *        datas[out]          initialized data of dataLayers
 *        layerMap[out]       layerMap
 */
172 173 174 175 176 177 178
void initDataLayer(TestConfig testConf,
                   std::vector<DataLayerPtr>* dataLayers,
                   vector<Argument>* datas,
                   LayerMap* layerMap,
                   string testLayerName,
                   size_t batchSize,
                   bool trans,
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185 186 187 188
                   bool useGpu);

/**
 * @brief initialize the parameter of testLayer
 *
 * @param testConf[in/out]    test config
 *        layerMap[out]       layerMap
 *        parameters[out]     parameters of testLayer
 *        testLayer[out]      testLayer
 */
189 190 191 192
void initTestLayer(TestConfig testConf,
                   LayerMap* layerMap,
                   std::vector<ParameterPtr>* parameters,
                   LayerPtr* testLayer);
Z
zhangjinchao01 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206

/**
 * @brief Test whether the layer's forward calculation is stable by adding
 *        perturbation to its parameters
 *
 * @param testConf[in]         test config
 *        weights[in]          weights of testLayer
 *        state[in]            state of testLayer
 *        cost[in]             input cost
 *        callbackCount[in]    number of done callback
 *        maxDiff[in/out]      max of all previous diff
 *        testLayer[in/out]    testLayer
 *        parameters[in/out]   parameters of testLayer
 */
207 208 209 210 211 212 213
void testPerturbParameter(TestConfig testConf,
                          const MatrixPtr weights,
                          const LayerStatePtr state,
                          real cost,
                          real callbackCount,
                          real* maxDiff,
                          LayerPtr testLayer,
Z
zhangjinchao01 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
                          std::vector<ParameterPtr>* parameters);

/**
 * @brief Test whether the layer's forward calculation is stable by adding
 *        perturbation to its input layers
 *
 * @param testConf[in]         test config
 *        weights[in]          weights of testLayer
 *        state[in]            state of testLayer
 *        cost[in]             input cost
 *        callbackCount[in]    number of done callback
 *        maxDiff[in/out]      max of all previous diff
 *        testLayer[in/out]    testLayer
 *        dataLayers[in/out]   dataLayers
 */
229 230 231 232 233 234 235
void testPerturbInput(TestConfig testConf,
                      const MatrixPtr weights,
                      const LayerStatePtr state,
                      real cost,
                      real callbackCount,
                      real* maxDiff,
                      LayerPtr testLayer,
Z
zhangjinchao01 已提交
236 237
                      std::vector<DataLayerPtr> dataLayers);

238 239 240 241 242 243 244
void testLayerGradKernel(TestConfig testConf,
                         string testLayerName,
                         size_t batchSize,
                         bool trans,
                         bool useGpu,
                         bool useWeight = false,
                         float epsilon = 0.02);
Z
zhangjinchao01 已提交
245

246 247 248 249 250 251
void testLayerGrad(TestConfig testConf,
                   string testLayerName,
                   size_t batchSize,
                   bool trans,
                   bool useGpu,
                   bool useWeight = false,
Z
zhangjinchao01 已提交
252 253
                   float epsilon = 0.02);

254 255 256 257 258 259 260
void testProjectionGrad(ProjectionConfig conf,
                        InputType inputType,
                        size_t parameterSize,
                        size_t batchSize,
                        bool useGpu,
                        bool testState = false,
                        int biasSize = 0,
261
                        bool sharedBias = false);
Z
zhangjinchao01 已提交
262

263 264 265 266 267
void testOperatorGrad(TestConfig& config,
                      OperatorConfig& operatorConf,
                      size_t batchSize,
                      bool useGpu,
                      bool testState = false);
Z
zhangjinchao01 已提交
268 269

}  //  namespace paddle