ps_gpu_trainer.cc 17.5 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <google/protobuf/text_format.h>
T
Thunderbrook 已提交
16 17 18
#include <cstdlib>
#include <string>
#include <vector>
19

T
Thunderbrook 已提交
20 21 22 23
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
24
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
T
Thunderbrook 已提交
25
#include "paddle/fluid/framework/trainer.h"
26 27
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
28 29 30 31 32 33 34
#include "paddle/fluid/platform/cuda_device_guard.h"

namespace paddle {
namespace framework {

void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc,
                              Dataset* dataset) {
T
Thunderbrook 已提交
35
  SetDataset(dataset);
T
Thunderbrook 已提交
36 37
  thread_num_ = trainer_desc.thread_num();
  param_ = trainer_desc.downpour_param();
T
Thunderbrook 已提交
38 39 40
  ParseDumpConfig(trainer_desc);
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
41 42 43 44 45 46 47 48
  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  InitializeGPUServer(trainer_desc);
  scale_datanorm_ = trainer_desc.scale_datanorm();
  int place_num = trainer_desc.worker_places_size();
  const std::vector<paddle::framework::DataFeed*> readers =
      dataset->GetReaders();
  dump_file_num_ = trainer_desc.dump_file_num();
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
  std::vector<int> dev_ids;
  for (int i = 0; i < place_num; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
    dev_ids.push_back(num);
  }
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
  VLOG(3) << "going to initialize pull dense worker";
  SetDebug(trainer_desc.debug());
  trainer_desc_ = trainer_desc;
  workers_.resize(place_num);
  for (int i = 0; i < place_num; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
    workers_[i]->SetDataFeed(readers[i]);
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
    workers_[i]->Initialize(trainer_desc);
    workers_[i]->SetWorkerNum(place_num);
  }
  return;
}

void PSGPUTrainer::InitializeGPUServer(const TrainerDesc& trainer_desc) {
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  // add for hbmps optimizer config
  auto fleet_desc_str = trainer_desc.fleet_desc();
  google::protobuf::TextFormat::ParseFromString(fleet_desc_str, &_ps_param);
  auto sparse_table =
      _ps_param.server_param().downpour_server_param().downpour_table_param(0);
  auto sparse_table_accessor = sparse_table.accessor();
  auto sparse_table_accessor_parameter =
      sparse_table_accessor.downpour_accessor_param();
  auto accessor_class = sparse_table_accessor.accessor_class();
  // gpups' sparse table optimizer config
  // now only support single sparse table
  // auto sparse_table = param_.sparse_table(0);
  std::unordered_map<std::string, float> config;
  if (accessor_class == "DownpourFeatureValueAccessor" ||
      accessor_class == "DownpourCtrAccessor" ||
      accessor_class == "DownpourCtrDoubleAccessor") {
    config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
    config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
    config["learning_rate"] =
        sparse_table_accessor.sparse_sgd_param().learning_rate();
    config["initial_g2sum"] =
        sparse_table_accessor.sparse_sgd_param().initial_g2sum();
    config["initial_range"] =
        sparse_table_accessor.sparse_sgd_param().initial_range();
    if (sparse_table_accessor.sparse_sgd_param().weight_bounds_size() == 2) {
      config["min_bound"] =
          sparse_table_accessor.sparse_sgd_param().weight_bounds()[0];
      config["max_bound"] =
          sparse_table_accessor.sparse_sgd_param().weight_bounds()[1];
    }
    config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();
  } else if (accessor_class == "DownpourSparseValueAccessor") {
    auto optimizer_name = sparse_table_accessor.sparse_commonsgd_param().name();
    if (optimizer_name == "naive") {
      config["learning_rate"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .naive()
                                    .learning_rate();
      config["initial_range"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .naive()
                                    .initial_range();
      if (sparse_table_accessor.sparse_commonsgd_param()
              .naive()
              .weight_bounds_size() == 2) {
        config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .naive()
                                  .weight_bounds()[0];
        config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .naive()
                                  .weight_bounds()[1];
      }
    } else if (optimizer_name == "adagrad") {
      config["learning_rate"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .adagrad()
                                    .learning_rate();
      config["initial_range"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .adagrad()
                                    .initial_range();
      config["initial_g2sum"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .adagrad()
                                    .initial_g2sum();
      if (sparse_table_accessor.sparse_commonsgd_param()
              .adagrad()
              .weight_bounds_size() == 2) {
        config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adagrad()
                                  .weight_bounds()[0];
        config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adagrad()
                                  .weight_bounds()[1];
      }
    } else if (optimizer_name == "adam") {
      config["learning_rate"] =
          sparse_table_accessor.sparse_commonsgd_param().adam().learning_rate();
      config["initial_range"] =
          sparse_table_accessor.sparse_commonsgd_param().adam().initial_range();
      if (sparse_table_accessor.sparse_commonsgd_param()
              .adam()
              .weight_bounds_size() == 2) {
        config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adam()
                                  .weight_bounds()[0];
        config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adam()
                                  .weight_bounds()[1];
      }
    }
  } else if (accessor_class == "DownpourUnitAccessor" ||
             accessor_class == "DownpourDoubleUnitAccessor") {
    config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
    config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
    auto optimizer_name = sparse_table_accessor.embedx_sgd_param().name();
    if (optimizer_name == "naive") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().naive().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().naive().initial_range();
      if (sparse_table_accessor.embedx_sgd_param()
              .naive()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] =
            sparse_table_accessor.embedx_sgd_param().naive().weight_bounds()[0];
        config["mf_max_bound"] =
            sparse_table_accessor.embedx_sgd_param().naive().weight_bounds()[1];
      }
    } else if (optimizer_name == "adagrad") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_range();
      config["mf_initial_g2sum"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_g2sum();
      if (sparse_table_accessor.embedx_sgd_param()
              .adagrad()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[0];
        config["mf_max_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[1];
      }
    } else if (optimizer_name == "std_adagrad") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_range();
      config["mf_initial_g2sum"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_g2sum();
      if (sparse_table_accessor.embedx_sgd_param()
              .adagrad()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[0];
        config["mf_max_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[1];
      }
    } else if (optimizer_name == "adam") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().adam().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().adam().initial_range();
      if (sparse_table_accessor.embedx_sgd_param()
              .adam()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] =
            sparse_table_accessor.embedx_sgd_param().adam().weight_bounds()[0];
        config["mf_max_bound"] =
            sparse_table_accessor.embedx_sgd_param().adam().weight_bounds()[1];
      }
    }
    config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();
  }

  auto ps_gpu_wrapper = paddle::framework::PSGPUWrapper::GetInstance();
  ps_gpu_wrapper->InitializeGPUServer(config);
T
Thunderbrook 已提交
248 249
}

T
Thunderbrook 已提交
250 251 252 253 254 255 256 257
std::string PSGPUTrainer::GetDumpPath(int tid) {
  if (user_define_dump_filename_ != "") {
    return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(), tid);
  }
  return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
                               mpi_rank_, tid);
}
T
Thunderbrook 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

void PSGPUTrainer::RegisterHeterCallback() {
  /*
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
    // workers_[worker]->Schedule(taskid);
  });
  */
}

void PSGPUTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
  for (size_t num = 0; num < places_.size(); ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
294 295 296 297 298 299 300 301 302 303
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
                          need_merge_var_names_.end(), var->Name());
      if (it == need_merge_var_names_.end()) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
T
Thunderbrook 已提交
304 305 306 307
  place_ = place;
  return;
}

T
Thunderbrook 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
void PSGPUTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
  }
}

T
Thunderbrook 已提交
326
void PSGPUTrainer::InitOtherEnv(const ProgramDesc& main_program) {
T
Thunderbrook 已提交
327 328 329
  if (need_dump_field_ || need_dump_param_) {
    InitDumpEnv();
  }
T
Thunderbrook 已提交
330 331 332 333 334
  VLOG(3) << "init other env done.";
}

void PSGPUTrainer::Run() {
  for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
335 336 337 338 339 340 341
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
T
Thunderbrook 已提交
342 343 344 345 346 347 348 349
  }
}

Scope* PSGPUTrainer::GetWorkerScope(int thread_id) { return nullptr; }

template <typename T>
void PSGPUTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
350
  TensorCopySync(*root_tensor, platform::CPUPlace(), &tmp_root);
T
Thunderbrook 已提交
351 352
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
353
  TensorCopySync(*tensor, platform::CPUPlace(), &tmp_tensor);
T
Thunderbrook 已提交
354 355 356 357
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
358 359 360 361 362 363 364 365 366 367 368 369 370
  TensorCopySync(tmp_root, platform::CPUPlace(), root_tensor);
}

void PSGPUTrainer::MergeDenseParam() {
  auto thread_scope = workers_[0]->GetThreadScope();
  for (auto& name : trainable_param_) {
    VLOG(2) << "merge var " << name << " to root scope";
    Variable* root_var = root_scope_->FindVar(name);
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
    Variable* var = thread_scope->FindVar(name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    TensorCopySync((*tensor), root_tensor->place(), root_tensor);
  }
T
Thunderbrook 已提交
371 372 373 374 375 376 377 378 379 380 381 382
}

void PSGPUTrainer::Finalize() {
  for (auto& th : threads_) {
    th.join();
  }
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
383 384 385
    if (root_tensor == nullptr || !root_tensor->IsInitialized()) {
      continue;
    }
T
Thunderbrook 已提交
386 387 388 389 390 391 392 393
    for (size_t j = 0; j < places_.size(); j++) {
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
394 395 396
      if (thread_tensor == nullptr || !thread_tensor->IsInitialized()) {
        continue;
      }
T
Thunderbrook 已提交
397 398
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
399 400 401
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) {  \
      if (framework::TransToProtoVarType(thread_tensor->dtype()) !=            \
          proto_type) {                                                        \
T
Thunderbrook 已提交
402 403
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
404 405
                << ", root tensor type=" << root_tensor->dtype()               \
                << ", thread tensor type=" << thread_tensor->dtype();          \
T
Thunderbrook 已提交
406 407 408 409 410 411 412 413
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
414
  MergeDenseParam();
T
Thunderbrook 已提交
415 416 417
  if (need_dump_field_ || need_dump_param_) {
    FinalizeDumpEnv();
  }
T
Thunderbrook 已提交
418 419 420 421 422
  root_scope_->DropKids();
}
}  // namespace framework
}  // namespace paddle
#endif