ps_gpu_trainer.cc 17.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <google/protobuf/text_format.h>
T
Thunderbrook 已提交
16 17 18
#include <cstdlib>
#include <string>
#include <vector>
19

T
Thunderbrook 已提交
20 21 22 23
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
24
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
T
Thunderbrook 已提交
25
#include "paddle/fluid/framework/trainer.h"
26 27
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
28 29 30 31 32 33 34
#include "paddle/fluid/platform/cuda_device_guard.h"

namespace paddle {
namespace framework {

void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc,
                              Dataset* dataset) {
T
Thunderbrook 已提交
35
  SetDataset(dataset);
T
Thunderbrook 已提交
36 37
  thread_num_ = trainer_desc.thread_num();
  param_ = trainer_desc.downpour_param();
T
Thunderbrook 已提交
38 39 40
  ParseDumpConfig(trainer_desc);
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
41 42 43 44 45 46 47 48
  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  // add for hbmps optimizer config
  auto fleet_desc_str = trainer_desc.fleet_desc();
  google::protobuf::TextFormat::ParseFromString(fleet_desc_str, &_ps_param);
  auto sparse_table =
      _ps_param.server_param().downpour_server_param().downpour_table_param(0);
  auto sparse_table_accessor = sparse_table.accessor();
  auto sparse_table_accessor_parameter =
      sparse_table_accessor.downpour_accessor_param();
  auto accessor_class = sparse_table_accessor.accessor_class();
  // gpups' sparse table optimizer config
  // now only support single sparse table
  // auto sparse_table = param_.sparse_table(0);
  std::unordered_map<std::string, float> config;
  if (accessor_class == "DownpourFeatureValueAccessor" ||
      accessor_class == "DownpourCtrAccessor" ||
      accessor_class == "DownpourCtrDoubleAccessor") {
    config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
    config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
    config["learning_rate"] =
        sparse_table_accessor.sparse_sgd_param().learning_rate();
    config["initial_g2sum"] =
        sparse_table_accessor.sparse_sgd_param().initial_g2sum();
    config["initial_range"] =
        sparse_table_accessor.sparse_sgd_param().initial_range();
    if (sparse_table_accessor.sparse_sgd_param().weight_bounds_size() == 2) {
      config["min_bound"] =
          sparse_table_accessor.sparse_sgd_param().weight_bounds()[0];
      config["max_bound"] =
          sparse_table_accessor.sparse_sgd_param().weight_bounds()[1];
    }
    config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();
  } else if (accessor_class == "DownpourSparseValueAccessor") {
    auto optimizer_name = sparse_table_accessor.sparse_commonsgd_param().name();
    if (optimizer_name == "naive") {
      config["learning_rate"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .naive()
                                    .learning_rate();
      config["initial_range"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .naive()
                                    .initial_range();
      if (sparse_table_accessor.sparse_commonsgd_param()
              .naive()
              .weight_bounds_size() == 2) {
        config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .naive()
                                  .weight_bounds()[0];
        config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .naive()
                                  .weight_bounds()[1];
      }
    } else if (optimizer_name == "adagrad") {
      config["learning_rate"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .adagrad()
                                    .learning_rate();
      config["initial_range"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .adagrad()
                                    .initial_range();
      config["initial_g2sum"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .adagrad()
                                    .initial_g2sum();
      if (sparse_table_accessor.sparse_commonsgd_param()
              .adagrad()
              .weight_bounds_size() == 2) {
        config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adagrad()
                                  .weight_bounds()[0];
        config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adagrad()
                                  .weight_bounds()[1];
      }
    } else if (optimizer_name == "adam") {
      config["learning_rate"] =
          sparse_table_accessor.sparse_commonsgd_param().adam().learning_rate();
      config["initial_range"] =
          sparse_table_accessor.sparse_commonsgd_param().adam().initial_range();
      if (sparse_table_accessor.sparse_commonsgd_param()
              .adam()
              .weight_bounds_size() == 2) {
        config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adam()
                                  .weight_bounds()[0];
        config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adam()
                                  .weight_bounds()[1];
      }
    }
  } else if (accessor_class == "DownpourUnitAccessor" ||
             accessor_class == "DownpourDoubleUnitAccessor") {
    config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
    config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
    auto optimizer_name = sparse_table_accessor.embedx_sgd_param().name();
    if (optimizer_name == "naive") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().naive().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().naive().initial_range();
      if (sparse_table_accessor.embedx_sgd_param()
              .naive()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] =
            sparse_table_accessor.embedx_sgd_param().naive().weight_bounds()[0];
        config["mf_max_bound"] =
            sparse_table_accessor.embedx_sgd_param().naive().weight_bounds()[1];
      }
    } else if (optimizer_name == "adagrad") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_range();
      config["mf_initial_g2sum"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_g2sum();
      if (sparse_table_accessor.embedx_sgd_param()
              .adagrad()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[0];
        config["mf_max_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[1];
      }
    } else if (optimizer_name == "std_adagrad") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_range();
      config["mf_initial_g2sum"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_g2sum();
      if (sparse_table_accessor.embedx_sgd_param()
              .adagrad()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[0];
        config["mf_max_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[1];
      }
    } else if (optimizer_name == "adam") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().adam().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().adam().initial_range();
      if (sparse_table_accessor.embedx_sgd_param()
              .adam()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] =
            sparse_table_accessor.embedx_sgd_param().adam().weight_bounds()[0];
        config["mf_max_bound"] =
            sparse_table_accessor.embedx_sgd_param().adam().weight_bounds()[1];
      }
    }
    config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();
  }

  auto ps_gpu_wrapper = paddle::framework::PSGPUWrapper::GetInstance();
  ps_gpu_wrapper->InitializeGPUServer(config);

T
Thunderbrook 已提交
207 208 209 210
  scale_datanorm_ = trainer_desc.scale_datanorm();
  int place_num = trainer_desc.worker_places_size();
  const std::vector<paddle::framework::DataFeed*> readers =
      dataset->GetReaders();
T
Thunderbrook 已提交
211 212
  dump_file_num_ = trainer_desc.dump_file_num();
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
T
Thunderbrook 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  std::vector<int> dev_ids;
  for (int i = 0; i < place_num; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
    dev_ids.push_back(num);
  }
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
  VLOG(3) << "going to initialize pull dense worker";
  SetDebug(trainer_desc.debug());
  trainer_desc_ = trainer_desc;
  workers_.resize(place_num);
  for (int i = 0; i < place_num; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
T
Thunderbrook 已提交
233 234 235 236 237
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
T
Thunderbrook 已提交
238
    workers_[i]->SetDataFeed(readers[i]);
239 240
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
T
Thunderbrook 已提交
241 242 243 244 245 246
    workers_[i]->Initialize(trainer_desc);
    workers_[i]->SetWorkerNum(place_num);
  }
  return;
}

T
Thunderbrook 已提交
247 248 249 250 251 252 253 254
std::string PSGPUTrainer::GetDumpPath(int tid) {
  if (user_define_dump_filename_ != "") {
    return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(), tid);
  }
  return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
                               mpi_rank_, tid);
}
T
Thunderbrook 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

void PSGPUTrainer::RegisterHeterCallback() {
  /*
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
    // workers_[worker]->Schedule(taskid);
  });
  */
}

void PSGPUTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
  for (size_t num = 0; num < places_.size(); ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
291 292 293 294 295 296 297 298 299 300
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
                          need_merge_var_names_.end(), var->Name());
      if (it == need_merge_var_names_.end()) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
T
Thunderbrook 已提交
301 302 303 304
  place_ = place;
  return;
}

T
Thunderbrook 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
void PSGPUTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
  }
}

T
Thunderbrook 已提交
323
void PSGPUTrainer::InitOtherEnv(const ProgramDesc& main_program) {
T
Thunderbrook 已提交
324 325 326
  if (need_dump_field_ || need_dump_param_) {
    InitDumpEnv();
  }
T
Thunderbrook 已提交
327 328 329 330 331
  VLOG(3) << "init other env done.";
}

void PSGPUTrainer::Run() {
  for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
332 333 334 335 336 337 338
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
T
Thunderbrook 已提交
339 340 341 342 343 344 345 346
  }
}

Scope* PSGPUTrainer::GetWorkerScope(int thread_id) { return nullptr; }

template <typename T>
void PSGPUTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
347
  TensorCopySync(*root_tensor, platform::CPUPlace(), &tmp_root);
T
Thunderbrook 已提交
348 349
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
350
  TensorCopySync(*tensor, platform::CPUPlace(), &tmp_tensor);
T
Thunderbrook 已提交
351 352 353 354
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
355 356 357 358 359 360 361 362 363 364 365 366 367
  TensorCopySync(tmp_root, platform::CPUPlace(), root_tensor);
}

void PSGPUTrainer::MergeDenseParam() {
  auto thread_scope = workers_[0]->GetThreadScope();
  for (auto& name : trainable_param_) {
    VLOG(2) << "merge var " << name << " to root scope";
    Variable* root_var = root_scope_->FindVar(name);
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
    Variable* var = thread_scope->FindVar(name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    TensorCopySync((*tensor), root_tensor->place(), root_tensor);
  }
T
Thunderbrook 已提交
368 369 370 371 372 373 374 375 376 377 378 379
}

void PSGPUTrainer::Finalize() {
  for (auto& th : threads_) {
    th.join();
  }
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
380 381 382
    if (root_tensor == nullptr || !root_tensor->IsInitialized()) {
      continue;
    }
T
Thunderbrook 已提交
383 384 385 386 387 388 389 390
    for (size_t j = 0; j < places_.size(); j++) {
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
391 392 393
      if (thread_tensor == nullptr || !thread_tensor->IsInitialized()) {
        continue;
      }
T
Thunderbrook 已提交
394 395
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
396 397 398
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) {  \
      if (framework::TransToProtoVarType(thread_tensor->dtype()) !=            \
          proto_type) {                                                        \
T
Thunderbrook 已提交
399 400
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
401 402
                << ", root tensor type=" << root_tensor->dtype()               \
                << ", thread tensor type=" << thread_tensor->dtype();          \
T
Thunderbrook 已提交
403 404 405 406 407 408 409 410
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
411
  MergeDenseParam();
T
Thunderbrook 已提交
412 413 414
  if (need_dump_field_ || need_dump_param_) {
    FinalizeDumpEnv();
  }
T
Thunderbrook 已提交
415 416 417 418 419
  root_scope_->DropKids();
}
}  // namespace framework
}  // namespace paddle
#endif