Parameter.cpp 14.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "Parameter.h"
L
liaogang 已提交
16
#include <gflags/gflags.h>
Z
zhangjinchao01 已提交
17 18 19 20 21 22
#include <fstream>
#include "AverageOptimizer.h"
#include "FirstOrderOptimizer.h"
#include "OptimizerFunctions.h"
#include "OptimizerWithRegularizer.h"
#include "ParameterUpdateFunctions.h"
23
#include "ThreadLocalBuffer.h"
Z
zhangjinchao01 已提交
24
#include "hl_gpu.h"
Y
Yu Yang 已提交
25 26 27 28
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/SparseRowMatrix.h"
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
29

30 31 32 33 34
DEFINE_int32(enable_grad_share,
             (100 * 1024 * 1024),
             "threshold for enable gradient parameter share for batch "
             "multi-cpu training");
DEFINE_int32(
35 36
    grad_share_block_num,
    64,
Z
zhangjinchao01 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50
    "block number of gradient parameter share for batch multi-cpu training");

namespace paddle {

const std::string Parameter::kMissParameterFail = "fail";
const std::string Parameter::kMissParameterRand = "rand";
const std::string Parameter::kMissParameterZero = "zero";

Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit)
    : config_(config),
      useGpu_(useGpu),
      deviceId_(-1),
      sharedCount_(0),
      updateCounter_(0),
T
tensor-tang 已提交
51 52
      updated_(false),
      headerFormat_(PARAM_FORMAT_ORIGINAL) {
Z
zhangjinchao01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  setID(-1); /* capture uninitialized id */
  if (useGpu_ && FLAGS_parallel_nn) {
    /* gpu environment is specified by device property */
    deviceId_ = config_.device();
    if (deviceId_ < 0) {
      useGpu_ = false;
    }
  }

  if (doInit) {
    initialize();
  }

  for (int i = 0; i < config.update_hooks_size(); ++i) {
    this->updaterHooks_.push_back(IParameterUpdaterHook::create(config, i));
  }
}

void Parameter::initialize() {
  SetDevice device(deviceId_);

  bufs_[PARAMETER_VALUE] =
      Vector::createParallelVector(config_.size(), useGpu_);
  bufs_[PARAMETER_VALUE]->zeroMem();

  if (config_.is_sparse()) {
    enableSparseParameter();
  }

  if (!isStatic()) {
    bufs_[PARAMETER_GRADIENT] =
        Vector::createParallelVector(config_.size(), useGpu_);
    bufs_[PARAMETER_MOMENTUM] =
        Vector::createParallelVector(config_.size(), useGpu_);

    bufs_[PARAMETER_GRADIENT]->zeroMem();
    bufs_[PARAMETER_MOMENTUM]->zeroMem();
  }
}

void Parameter::randomize(const VectorPtr& value,
                          const ParameterConfig& config) {
  if (PARAMETER_INIT_UNIFORM == config.initial_strategy()) {
    // initialize the parameter as uniform distribution
    real initial_min = config.initial_mean() - config.initial_std();
    real initial_max = config.initial_mean() + config.initial_std();
    value->uniform(initial_min, initial_max);
    VLOG(1) << config.name() << ": initial_min=" << initial_min
101
            << ", initial_max=" << initial_max;
Z
zhangjinchao01 已提交
102 103 104
  } else if (PARAMETER_INIT_NORMAL == config.initial_strategy()) {
    /* Initialize the parameters randomly */
    value->randnorm(config.initial_mean(), config.initial_std());
105 106
    VLOG(1) << config.name() << ": initial_mean=" << config.initial_mean()
            << ", initial_std=" << config.initial_std();
Z
zhangjinchao01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120
  } else {
    LOG(FATAL) << "not supported initial_strategy: "
               << config.initial_strategy();
  }
}

void Parameter::randomize() {
  if (!bufs_[PARAMETER_VALUE]) return;
  SetDevice device(deviceId_);
  Parameter::randomize(bufs_[PARAMETER_VALUE], config_);

  if (config_.is_sparse()) {
    if (format_ == SPARSE_CSC) {
      sparseRand(intBufs_[PARAMETER_COLS]->getData(),
121 122 123 124 125
                 intBufs_[PARAMETER_ROWS]->getData(),
                 config_.size(),
                 config_.dims(1) + 1,
                 config_.dims(0),
                 useGpu_);
Z
zhangjinchao01 已提交
126 127
    } else {
      sparseRand(intBufs_[PARAMETER_ROWS]->getData(),
128 129 130 131 132
                 intBufs_[PARAMETER_COLS]->getData(),
                 config_.size(),
                 config_.dims(0) + 1,
                 config_.dims(1),
                 useGpu_);
Z
zhangjinchao01 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    }
  }
  setValueUpdated();
}

void Parameter::zeroMem() {
  if (!bufs_[PARAMETER_VALUE]) return;
  bufs_[PARAMETER_VALUE]->zeroMem();
  setValueUpdated();
  LOG(INFO) << getName() << " set to 0";
}

bool Parameter::isGradShared(size_t* blockNum) {
  if (!useGpu_ && !isStatic() && FLAGS_enable_grad_share > 0 &&
      !isGradSparseUpdate() &&
      this->getSize() > (size_t)FLAGS_enable_grad_share) {
    if (blockNum) {
      *blockNum = (size_t)FLAGS_grad_share_block_num;
    }
    return true;
  }
  return false;
}

bool Parameter::isValueShared() {
  return !useGpu_ && config_.is_shared() && FLAGS_trainer_count > 1;
}

bool Parameter::isGradSparseUpdate() const {
  return !useGpu_ && !isStatic() &&
163
         (config_.sparse_update() || config_.sparse_remote_update());
Z
zhangjinchao01 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
}

void Parameter::setMat(ParameterType pType, int matType) {
  CHECK(!mats_[pType]);

  if (config_.dims_size() == 0 && matType == MAT_NORMAL) {
    return;
  }

  CHECK_EQ((size_t)config_.dims_size(), 2LU);
  size_t height = config_.dims(0);
  size_t width = config_.dims(1);
  if (matType == MAT_NORMAL) {
    if (!config_.is_sparse()) {
      CHECK_EQ(height * width, bufs_[pType]->getSize());
      mats_[pType] =
          Matrix::create(bufs_[pType]->getMemoryHandle(), height, width);
    } else {
      size_t size = bufs_[pType]->getSize();
      CHECK_GE(height * width, size);
      if (format_ == SPARSE_CSR) {
        CHECK_EQ(height + 1, intBufs_[PARAMETER_ROWS]->getSize());
        CHECK_EQ(size, intBufs_[PARAMETER_COLS]->getSize());
      } else {
        CHECK_EQ(width + 1, intBufs_[PARAMETER_COLS]->getSize());
        CHECK_EQ(size, intBufs_[PARAMETER_ROWS]->getSize());
      }
191 192 193 194 195 196 197 198 199 200 201
      mats_[pType] =
          Matrix::createSparseMatrix(bufs_[pType]->getData(),
                                     intBufs_[PARAMETER_ROWS]->getData(),
                                     intBufs_[PARAMETER_COLS]->getData(),
                                     height,
                                     width,
                                     bufs_[pType]->getSize(),
                                     FLOAT_VALUE,
                                     format_,
                                     false,
                                     useGpu_);
Z
zhangjinchao01 已提交
202
    }
H
hedaoyuan 已提交
203 204 205
  }
#ifndef PADDLE_MOBILE_INFERENCE
  else if (matType == MAT_NORMAL_SHARED) {
Z
zhangjinchao01 已提交
206 207 208 209
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    size_t blockNum = 0;
    CHECK(isGradShared(&blockNum));
    mats_[pType] = std::make_shared<SharedCpuMatrix>(
210 211 212 213 214
        blockNum,
        std::dynamic_pointer_cast<CpuMemoryHandle>(
            bufs_[pType]->getMemoryHandle()),
        height,
        width);
Z
zhangjinchao01 已提交
215 216 217 218
  } else if (matType == MAT_VALUE_SHARED) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    mats_[pType] = std::make_shared<SharedCpuMatrix>(
        std::dynamic_pointer_cast<CpuMemoryHandle>(
219 220 221
            bufs_[pType]->getMemoryHandle()),
        height,
        width);
H
hedaoyuan 已提交
222
  } else if (matType == MAT_SPARSE_ROW_IDS) {
Z
zhangjinchao01 已提交
223 224 225 226
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    mats_[pType] = std::make_shared<SparseRowIdsCpuMatrix>(
        std::dynamic_pointer_cast<CpuMemoryHandle>(
            bufs_[pType]->getMemoryHandle()),
227 228
        height,
        width);
Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238
  } else if (matType == MAT_SPARSE_ROW) {
    auto valueMat =
        std::dynamic_pointer_cast<SparseRowCpuMatrix>(mats_[PARAMETER_VALUE]);
    SparseRowCpuMatrix::IndexDictPtr indexDict(nullptr);
    if (pType != PARAMETER_VALUE) {
      CHECK(valueMat) << "The matrix for PARAMETER_VALUE must be set "
                      << " and its type must be MAT_SPARSE_ROW,"
                      << " MAT_SPARSE_ROW_PREFETCH or MAT_CACHE_ROW";
      indexDict = valueMat->getIndexDictHandle();
    }
239 240 241 242 243 244
    auto mat =
        std::make_shared<SparseRowCpuMatrix>(nullptr,
                                             height,
                                             width,
                                             // grad share index with value
                                             indexDict);
Z
zhangjinchao01 已提交
245 246 247
    mats_[pType] = mat;
  } else if (matType == MAT_CACHE_ROW) {
    CHECK(isGradSparseUpdate());
248
    auto mat = std::make_shared<CacheRowCpuMatrix>(height, width);
Z
zhangjinchao01 已提交
249 250 251 252 253
    mats_[pType] = mat;
  } else if (matType == MAT_SPARSE_ROW_PREFETCH_FULL_SIZE ||
             matType == MAT_SPARSE_ROW_PREFETCH) {
    auto mat = std::make_shared<SparsePrefetchRowCpuMatrix>(
        bufs_[pType] ? std::dynamic_pointer_cast<CpuMemoryHandle>(
254 255 256 257
                           bufs_[pType]->getMemoryHandle())
                     : nullptr,
        height,
        width,
Z
zhangjinchao01 已提交
258 259 260 261 262
        nullptr,  // indexDictHandle
        getGlobalSyncThreadPool());
    mats_[pType] = mat;
  } else if (matType == MAT_SPARSE_ROW_AUTO_GROW) {
    CHECK(isGradSparseUpdate());
263
    mats_[pType] = std::make_shared<SparseAutoGrowRowCpuMatrix>(height, width);
264 265 266
  }
#endif
  else {
Z
zhangjinchao01 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    LOG(FATAL) << "Unsupported mat type" << matType;
  }
}

void Parameter::incUpdate(const UpdateCallback& callback) {
  // Static parameter is fixed, and does not need to be updated
  if (isStatic()) {
    return;
  }

  ++updateCounter_;
  if (isUpdatable()) {
    if (callback) callback(this);
    clearUpdate();
  }
}

bool Parameter::save(const std::string& filename) const {
  std::ofstream fs(filename, std::ios_base::binary);
  CHECK(fs) << "Fail to open " << filename;
  return save(fs);
}

bool Parameter::save(std::ostream& s) const {
  CpuVector vec(*bufs_[PARAMETER_VALUE].get());
  Header header;
T
tensor-tang 已提交
293
  header.format = headerFormat_;
Z
zhangjinchao01 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
  header.valueSize = sizeof(real);
  header.size = getSize();

  CHECK_EQ(header.size, vec.getSize());

  CHECK(s.write(reinterpret_cast<char*>(&header), sizeof(header)))
      << "Fail to write parameter " << getName();

  CHECK(s.write(reinterpret_cast<char*>(vec.getData()),
                header.size * sizeof(real)))
      << "Fail to write parameter " << getName();
  if (config_.is_sparse()) {
    CpuIVector rows(*intBufs_[PARAMETER_ROWS].get());
    CpuIVector cols(*intBufs_[PARAMETER_COLS].get());
    CHECK(s.write(reinterpret_cast<char*>(rows.getData()),
                  rows.getSize() * sizeof(int)))
        << "Fail to write parameter " << getName();
    CHECK(s.write(reinterpret_cast<char*>(cols.getData()),
                  cols.getSize() * sizeof(int)))
        << "Fail to write parameter " << getName();
  }

  return true;
}

/**
 * Load parameter value from a file
 */
bool Parameter::load(const std::string& filename) {
  std::ifstream fs(filename, std::ios_base::binary);
  if (!fs) {
    LOG(INFO) << "missing parameters [" << filename << "] while loading model.";
    if (kMissParameterFail == FLAGS_load_missing_parameter_strategy) {
      LOG(FATAL) << getName() << " missing, not allowed.";
      return false;
    }
    if (kMissParameterRand == FLAGS_load_missing_parameter_strategy) {
      LOG(INFO) << getName() << " missing, set to random.";
      randomize();
      return true;
    }
    if (kMissParameterZero == FLAGS_load_missing_parameter_strategy) {
      LOG(INFO) << getName() << " missing, set to zero.";
      zeroMem();
      return true;
    }
    LOG(FATAL) << "unsupported load_missing_parameter_strategy: "
341
               << FLAGS_load_missing_parameter_strategy;
Z
zhangjinchao01 已提交
342 343 344 345 346 347 348 349 350 351
    return false;
  }
  return load(fs);
}

bool Parameter::load(std::istream& s) {
  CpuVector vec(*bufs_[PARAMETER_VALUE].get());
  Header header;
  CHECK(s.read(reinterpret_cast<char*>(&header), sizeof(header)))
      << "Fail to read parameter " << getName();
T
tensor-tang 已提交
352 353 354
  CHECK(isHeaderFormatSupported(header.format)) << "Incorrect format version: "
                                                << header.format;
  headerFormat_ = header.format;
Z
zhangjinchao01 已提交
355 356 357 358 359 360 361 362
  CHECK_EQ(header.size, getSize())
      << "The size (" << header.size << ") in the file does not match the size "
      << "(" << getSize() << ") of the parameter: " << getName();
  CHECK_EQ(header.valueSize, sizeof(real))
      << "Unsupported valueSize " << header.valueSize << " at: " << getName();
  CHECK(s.read(reinterpret_cast<char*>(vec.getData()),
               header.size * sizeof(real)));

363
  auto& tmp = *bufs_[PARAMETER_VALUE].get();
Z
zhangjinchao01 已提交
364 365 366 367 368 369 370 371 372 373
  if (typeid(tmp) == typeid(GpuVector)) {
    bufs_[PARAMETER_VALUE]->copyFrom(vec);
  }

  if (config_.is_sparse() && config_.need_compact()) {
    // load from dense parameter with many zero
    CHECK_EQ(config_.dims_size(), 2);
    auto height = config_.dims(0);
    auto width = config_.dims(1);
    auto mat = Matrix::create(vec.getData(), height, width);
374 375 376 377 378
    CpuSparseMatrix sparseMat(height,
                              width,
                              0,
                              FLOAT_VALUE,
                              format_,
Z
zhangjinchao01 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                              /*trans*/ false);
    sparseMat.copyFrom(*mat, HPPL_STREAM_DEFAULT);
    auto nnz = sparseMat.getElementCnt();
    size_t rowSize = (format_ == SPARSE_CSR) ? height + 1 : nnz;
    size_t colSize = (format_ == SPARSE_CSR) ? nnz : width + 1;

    intBufs_[PARAMETER_ROWS]->copyFrom(sparseMat.getRows(), rowSize);
    intBufs_[PARAMETER_COLS]->copyFrom(sparseMat.getCols(), colSize);
    bufs_[PARAMETER_VALUE]->resize(nnz);  // for setMat check
    bufs_[PARAMETER_VALUE]->copyFrom(sparseMat.getValue(), nnz);
    config_.set_size(nnz);
    LOG(INFO) << "compact nnz=" << (1. * nnz / (height * width))
              << " name=" << config_.name();
  } else if (config_.is_sparse()) {
    CpuIVector rows(*intBufs_[PARAMETER_ROWS].get());
    CpuIVector cols(*intBufs_[PARAMETER_COLS].get());
    size_t rowSize, colSize;
    CHECK_EQ(config_.dims_size(), 2);
    if (format_ == SPARSE_CSR) {
      rowSize = config_.dims(0) + 1;
      colSize = config_.size();
    } else {
      rowSize = config_.size();
      colSize = config_.dims(1) + 1;
    }
    CHECK(
        s.read(reinterpret_cast<char*>(rows.getData()), rowSize * sizeof(int)));
    CHECK(
        s.read(reinterpret_cast<char*>(cols.getData()), colSize * sizeof(int)));
408
    auto& paramRows = *intBufs_[PARAMETER_ROWS].get();
Z
zhangjinchao01 已提交
409 410 411
    if (typeid(paramRows) == typeid(GpuIVector)) {
      intBufs_[PARAMETER_ROWS]->copyFrom(rows);
    }
412
    auto& paramCols = *intBufs_[PARAMETER_COLS].get();
Z
zhangjinchao01 已提交
413 414 415 416 417 418 419 420 421 422 423
    if (typeid(paramCols) == typeid(GpuIVector)) {
      intBufs_[PARAMETER_COLS]->copyFrom(cols);
    }
  }

  setValueUpdated();

  return true;
}

}  // namespace paddle