Parameter.cpp 17.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "Parameter.h"
Z
zhangjinchao01 已提交
16 17 18 19 20 21 22
#include <fstream>
#include "AverageOptimizer.h"
#include "FirstOrderOptimizer.h"
#include "OptimizerFunctions.h"
#include "OptimizerWithRegularizer.h"
#include "ParameterUpdateFunctions.h"
#include "hl_gpu.h"
Y
Yu Yang 已提交
23 24 25
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/SparseRowMatrix.h"
Z
zhangjinchao01 已提交
26
#include "paddle/utils/CommandLineParser.h"
Y
Yu Yang 已提交
27
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
28

29 30
P_DEFINE_int32(enable_grad_share,
               (100 * 1024 * 1024),
Z
zhangjinchao01 已提交
31 32 33
               "threshold for enable gradient parameter share for batch "
               "multi-cpu training");
P_DEFINE_int32(
34 35
    grad_share_block_num,
    64,
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    "block number of gradient parameter share for batch multi-cpu training");

namespace paddle {

const std::string Parameter::kMissParameterFail = "fail";
const std::string Parameter::kMissParameterRand = "rand";
const std::string Parameter::kMissParameterZero = "zero";

Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit)
    : config_(config),
      useGpu_(useGpu),
      deviceId_(-1),
      sharedCount_(0),
      updateCounter_(0),
      updated_(false) {
  setID(-1); /* capture uninitialized id */
  if (useGpu_ && FLAGS_parallel_nn) {
    /* gpu environment is specified by device property */
    deviceId_ = config_.device();
    if (deviceId_ < 0) {
      useGpu_ = false;
    }
  }

  if (doInit) {
    initialize();
  }

  for (int i = 0; i < config.update_hooks_size(); ++i) {
    this->updaterHooks_.push_back(IParameterUpdaterHook::create(config, i));
  }
}

void Parameter::initialize() {
  SetDevice device(deviceId_);

  bufs_[PARAMETER_VALUE] =
      Vector::createParallelVector(config_.size(), useGpu_);
  bufs_[PARAMETER_VALUE]->zeroMem();

  if (config_.is_sparse()) {
    enableSparseParameter();
  }

  if (!isStatic()) {
    bufs_[PARAMETER_GRADIENT] =
        Vector::createParallelVector(config_.size(), useGpu_);
    bufs_[PARAMETER_MOMENTUM] =
        Vector::createParallelVector(config_.size(), useGpu_);

    bufs_[PARAMETER_GRADIENT]->zeroMem();
    bufs_[PARAMETER_MOMENTUM]->zeroMem();
  }
}

void Parameter::randomize(const VectorPtr& value,
                          const ParameterConfig& config) {
  if (PARAMETER_INIT_UNIFORM == config.initial_strategy()) {
    // initialize the parameter as uniform distribution
    real initial_min = config.initial_mean() - config.initial_std();
    real initial_max = config.initial_mean() + config.initial_std();
    value->uniform(initial_min, initial_max);
    VLOG(1) << config.name() << ": initial_min=" << initial_min
99
            << ", initial_max=" << initial_max;
Z
zhangjinchao01 已提交
100 101 102
  } else if (PARAMETER_INIT_NORMAL == config.initial_strategy()) {
    /* Initialize the parameters randomly */
    value->randnorm(config.initial_mean(), config.initial_std());
103 104
    VLOG(1) << config.name() << ": initial_mean=" << config.initial_mean()
            << ", initial_std=" << config.initial_std();
Z
zhangjinchao01 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118
  } else {
    LOG(FATAL) << "not supported initial_strategy: "
               << config.initial_strategy();
  }
}

void Parameter::randomize() {
  if (!bufs_[PARAMETER_VALUE]) return;
  SetDevice device(deviceId_);
  Parameter::randomize(bufs_[PARAMETER_VALUE], config_);

  if (config_.is_sparse()) {
    if (format_ == SPARSE_CSC) {
      sparseRand(intBufs_[PARAMETER_COLS]->getData(),
119 120 121 122 123
                 intBufs_[PARAMETER_ROWS]->getData(),
                 config_.size(),
                 config_.dims(1) + 1,
                 config_.dims(0),
                 useGpu_);
Z
zhangjinchao01 已提交
124 125
    } else {
      sparseRand(intBufs_[PARAMETER_ROWS]->getData(),
126 127 128 129 130
                 intBufs_[PARAMETER_COLS]->getData(),
                 config_.size(),
                 config_.dims(0) + 1,
                 config_.dims(1),
                 useGpu_);
Z
zhangjinchao01 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    }
  }
  setValueUpdated();
}

void Parameter::zeroMem() {
  if (!bufs_[PARAMETER_VALUE]) return;
  bufs_[PARAMETER_VALUE]->zeroMem();
  setValueUpdated();
  LOG(INFO) << getName() << " set to 0";
}

bool Parameter::isGradShared(size_t* blockNum) {
  if (!useGpu_ && !isStatic() && FLAGS_enable_grad_share > 0 &&
      !isGradSparseUpdate() &&
      this->getSize() > (size_t)FLAGS_enable_grad_share) {
    if (blockNum) {
      *blockNum = (size_t)FLAGS_grad_share_block_num;
    }
    return true;
  }
  return false;
}

bool Parameter::isValueShared() {
  return !useGpu_ && config_.is_shared() && FLAGS_trainer_count > 1;
}

bool Parameter::isGradSparseUpdate() const {
  return !useGpu_ && !isStatic() &&
161
         (config_.sparse_update() || config_.sparse_remote_update());
Z
zhangjinchao01 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
}

void Parameter::setMat(ParameterType pType, int matType) {
  CHECK(!mats_[pType]);

  if (config_.dims_size() == 0 && matType == MAT_NORMAL) {
    return;
  }

  CHECK_EQ((size_t)config_.dims_size(), 2LU);
  size_t height = config_.dims(0);
  size_t width = config_.dims(1);
  if (matType == MAT_NORMAL) {
    if (!config_.is_sparse()) {
      CHECK_EQ(height * width, bufs_[pType]->getSize());
      mats_[pType] =
          Matrix::create(bufs_[pType]->getMemoryHandle(), height, width);
    } else {
      size_t size = bufs_[pType]->getSize();
      CHECK_GE(height * width, size);
      if (format_ == SPARSE_CSR) {
        CHECK_EQ(height + 1, intBufs_[PARAMETER_ROWS]->getSize());
        CHECK_EQ(size, intBufs_[PARAMETER_COLS]->getSize());
      } else {
        CHECK_EQ(width + 1, intBufs_[PARAMETER_COLS]->getSize());
        CHECK_EQ(size, intBufs_[PARAMETER_ROWS]->getSize());
      }
189 190 191 192 193 194 195 196 197 198 199
      mats_[pType] =
          Matrix::createSparseMatrix(bufs_[pType]->getData(),
                                     intBufs_[PARAMETER_ROWS]->getData(),
                                     intBufs_[PARAMETER_COLS]->getData(),
                                     height,
                                     width,
                                     bufs_[pType]->getSize(),
                                     FLOAT_VALUE,
                                     format_,
                                     false,
                                     useGpu_);
Z
zhangjinchao01 已提交
200 201 202 203 204 205
    }
  } else if (matType == MAT_NORMAL_SHARED) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    size_t blockNum = 0;
    CHECK(isGradShared(&blockNum));
    mats_[pType] = std::make_shared<SharedCpuMatrix>(
206 207 208 209 210
        blockNum,
        std::dynamic_pointer_cast<CpuMemoryHandle>(
            bufs_[pType]->getMemoryHandle()),
        height,
        width);
Z
zhangjinchao01 已提交
211 212 213 214
  } else if (matType == MAT_VALUE_SHARED) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    mats_[pType] = std::make_shared<SharedCpuMatrix>(
        std::dynamic_pointer_cast<CpuMemoryHandle>(
215 216 217
            bufs_[pType]->getMemoryHandle()),
        height,
        width);
Z
zhangjinchao01 已提交
218 219 220 221 222
  } else if (matType == MAT_SPARSE_ROW_IDS) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    mats_[pType] = std::make_shared<SparseRowIdsCpuMatrix>(
        std::dynamic_pointer_cast<CpuMemoryHandle>(
            bufs_[pType]->getMemoryHandle()),
223 224
        height,
        width);
Z
zhangjinchao01 已提交
225 226 227 228 229 230 231 232 233 234
  } else if (matType == MAT_SPARSE_ROW) {
    auto valueMat =
        std::dynamic_pointer_cast<SparseRowCpuMatrix>(mats_[PARAMETER_VALUE]);
    SparseRowCpuMatrix::IndexDictPtr indexDict(nullptr);
    if (pType != PARAMETER_VALUE) {
      CHECK(valueMat) << "The matrix for PARAMETER_VALUE must be set "
                      << " and its type must be MAT_SPARSE_ROW,"
                      << " MAT_SPARSE_ROW_PREFETCH or MAT_CACHE_ROW";
      indexDict = valueMat->getIndexDictHandle();
    }
235 236 237 238 239 240
    auto mat =
        std::make_shared<SparseRowCpuMatrix>(nullptr,
                                             height,
                                             width,
                                             // grad share index with value
                                             indexDict);
Z
zhangjinchao01 已提交
241 242 243
    mats_[pType] = mat;
  } else if (matType == MAT_CACHE_ROW) {
    CHECK(isGradSparseUpdate());
244
    auto mat = std::make_shared<CacheRowCpuMatrix>(height, width);
Z
zhangjinchao01 已提交
245 246 247 248 249
    mats_[pType] = mat;
  } else if (matType == MAT_SPARSE_ROW_PREFETCH_FULL_SIZE ||
             matType == MAT_SPARSE_ROW_PREFETCH) {
    auto mat = std::make_shared<SparsePrefetchRowCpuMatrix>(
        bufs_[pType] ? std::dynamic_pointer_cast<CpuMemoryHandle>(
250 251 252 253
                           bufs_[pType]->getMemoryHandle())
                     : nullptr,
        height,
        width,
Z
zhangjinchao01 已提交
254 255 256 257 258
        nullptr,  // indexDictHandle
        getGlobalSyncThreadPool());
    mats_[pType] = mat;
  } else if (matType == MAT_SPARSE_ROW_AUTO_GROW) {
    CHECK(isGradSparseUpdate());
259
    mats_[pType] = std::make_shared<SparseAutoGrowRowCpuMatrix>(height, width);
Z
zhangjinchao01 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  } else {
    LOG(FATAL) << "Unsupported mat type" << matType;
  }
}

SparsePrefetchRowCpuMatrix* Parameter::getPrefetchMatrix() {
  MatrixPtr mat = mats_[PARAMETER_VALUE];
  if (mat) {
    return dynamic_cast<SparsePrefetchRowCpuMatrix*>(mat.get());
  }

  return nullptr;
}

void Parameter::updateWithGradient(real learningRate) {
275 276 277 278 279 280
  sgdUpdate(learningRate * config_.learning_rate(),
            config_.momentum(),
            config_.decay_rate(),
            bufs_[PARAMETER_VALUE].get(),
            bufs_[PARAMETER_GRADIENT].get(),
            bufs_[PARAMETER_MOMENTUM].get());
Z
zhangjinchao01 已提交
281 282
}

283 284 285 286 287
void Parameter::updateWithGradient(real learningRate,
                                   MatrixPtr gradMat,
                                   IVectorPtr t0,
                                   int currentTime,
                                   bool fini) {
Z
zhangjinchao01 已提交
288 289 290 291 292 293
  SparseRowCpuMatrix* sparseMat =
      dynamic_cast<SparseRowCpuMatrix*>(gradMat.get());
  CHECK(sparseMat);
  CHECK_EQ(config_.momentum(), 0.0f)
      << "not support momentum in sparse input sgd";
  bool useL1 = (config_.decay_rate_l1() != 0.0f);
294 295 296 297
  sparseMat->sgdUpdate(*bufs_[PARAMETER_VALUE],
                       *t0,
                       learningRate * config_.learning_rate(),
                       currentTime,
Z
zhangjinchao01 已提交
298
                       useL1 ? config_.decay_rate_l1() : config_.decay_rate(),
299 300
                       useL1,
                       fini);
Z
zhangjinchao01 已提交
301 302
}

303 304
void Parameter::updateWithGradient(real learningRate,
                                   VectorPtr gradVec,
Z
zhangjinchao01 已提交
305 306
                                   bool normalUpdate) {
  if (normalUpdate) {
307 308 309 310 311
    sgdUpdate(learningRate * config_.learning_rate(),
              config_.momentum(),
              config_.decay_rate(),
              bufs_[PARAMETER_VALUE].get(),
              gradVec.get(),
Z
zhangjinchao01 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
              bufs_[PARAMETER_MOMENTUM].get());
  } else {
    size_t size = gradVec->getSize();
    real* mom = bufs_[PARAMETER_MOMENTUM]->getData();
    real* grad = gradVec->getData();
    real* value = bufs_[PARAMETER_VALUE]->getData();
    hl_matrix_add(mom, grad, mom, 1, size, 1.0f, learningRate);
    hl_matrix_add(value, grad, value, 1, size, 1.0f, learningRate);
  }
}

void Parameter::incUpdate(const UpdateCallback& callback) {
  // Static parameter is fixed, and does not need to be updated
  if (isStatic()) {
    return;
  }

  ++updateCounter_;
  if (isUpdatable()) {
    if (callback) callback(this);
    clearUpdate();
  }
}

bool Parameter::save(const std::string& filename) const {
  std::ofstream fs(filename, std::ios_base::binary);
  CHECK(fs) << "Fail to open " << filename;
  return save(fs);
}

bool Parameter::save(std::ostream& s) const {
  CpuVector vec(*bufs_[PARAMETER_VALUE].get());
  Header header;
  header.version = kFormatVersion;
  header.valueSize = sizeof(real);
  header.size = getSize();

  CHECK_EQ(header.size, vec.getSize());

  CHECK(s.write(reinterpret_cast<char*>(&header), sizeof(header)))
      << "Fail to write parameter " << getName();

  CHECK(s.write(reinterpret_cast<char*>(vec.getData()),
                header.size * sizeof(real)))
      << "Fail to write parameter " << getName();
  if (config_.is_sparse()) {
    CpuIVector rows(*intBufs_[PARAMETER_ROWS].get());
    CpuIVector cols(*intBufs_[PARAMETER_COLS].get());
    CHECK(s.write(reinterpret_cast<char*>(rows.getData()),
                  rows.getSize() * sizeof(int)))
        << "Fail to write parameter " << getName();
    CHECK(s.write(reinterpret_cast<char*>(cols.getData()),
                  cols.getSize() * sizeof(int)))
        << "Fail to write parameter " << getName();
  }

  return true;
}

/**
 * Load parameter value from a file
 */
bool Parameter::load(const std::string& filename) {
  std::ifstream fs(filename, std::ios_base::binary);
  if (!fs) {
    LOG(INFO) << "missing parameters [" << filename << "] while loading model.";
    if (isStatic()) {
      LOG(FATAL) << getName() << " is static but missing, not allowed.";
      return false;
    }
    if (kMissParameterFail == FLAGS_load_missing_parameter_strategy) {
      LOG(FATAL) << getName() << " missing, not allowed.";
      return false;
    }
    if (kMissParameterRand == FLAGS_load_missing_parameter_strategy) {
      LOG(INFO) << getName() << " missing, set to random.";
      randomize();
      return true;
    }
    if (kMissParameterZero == FLAGS_load_missing_parameter_strategy) {
      LOG(INFO) << getName() << " missing, set to zero.";
      zeroMem();
      return true;
    }
    LOG(FATAL) << "unsupported load_missing_parameter_strategy: "
397
               << FLAGS_load_missing_parameter_strategy;
Z
zhangjinchao01 已提交
398 399 400 401 402 403 404 405 406 407
    return false;
  }
  return load(fs);
}

bool Parameter::load(std::istream& s) {
  CpuVector vec(*bufs_[PARAMETER_VALUE].get());
  Header header;
  CHECK(s.read(reinterpret_cast<char*>(&header), sizeof(header)))
      << "Fail to read parameter " << getName();
408 409
  CHECK_EQ(header.version, kFormatVersion) << "Incorrect format version: "
                                           << header.version;
Z
zhangjinchao01 已提交
410 411 412 413 414 415 416 417
  CHECK_EQ(header.size, getSize())
      << "The size (" << header.size << ") in the file does not match the size "
      << "(" << getSize() << ") of the parameter: " << getName();
  CHECK_EQ(header.valueSize, sizeof(real))
      << "Unsupported valueSize " << header.valueSize << " at: " << getName();
  CHECK(s.read(reinterpret_cast<char*>(vec.getData()),
               header.size * sizeof(real)));

418
  auto& tmp = *bufs_[PARAMETER_VALUE].get();
Z
zhangjinchao01 已提交
419 420 421 422 423 424 425 426 427 428
  if (typeid(tmp) == typeid(GpuVector)) {
    bufs_[PARAMETER_VALUE]->copyFrom(vec);
  }

  if (config_.is_sparse() && config_.need_compact()) {
    // load from dense parameter with many zero
    CHECK_EQ(config_.dims_size(), 2);
    auto height = config_.dims(0);
    auto width = config_.dims(1);
    auto mat = Matrix::create(vec.getData(), height, width);
429 430 431 432 433
    CpuSparseMatrix sparseMat(height,
                              width,
                              0,
                              FLOAT_VALUE,
                              format_,
Z
zhangjinchao01 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
                              /*trans*/ false);
    sparseMat.copyFrom(*mat, HPPL_STREAM_DEFAULT);
    auto nnz = sparseMat.getElementCnt();
    size_t rowSize = (format_ == SPARSE_CSR) ? height + 1 : nnz;
    size_t colSize = (format_ == SPARSE_CSR) ? nnz : width + 1;

    intBufs_[PARAMETER_ROWS]->copyFrom(sparseMat.getRows(), rowSize);
    intBufs_[PARAMETER_COLS]->copyFrom(sparseMat.getCols(), colSize);
    bufs_[PARAMETER_VALUE]->resize(nnz);  // for setMat check
    bufs_[PARAMETER_VALUE]->copyFrom(sparseMat.getValue(), nnz);
    config_.set_size(nnz);
    LOG(INFO) << "compact nnz=" << (1. * nnz / (height * width))
              << " name=" << config_.name();
  } else if (config_.is_sparse()) {
    CpuIVector rows(*intBufs_[PARAMETER_ROWS].get());
    CpuIVector cols(*intBufs_[PARAMETER_COLS].get());
    size_t rowSize, colSize;
    CHECK_EQ(config_.dims_size(), 2);
    if (format_ == SPARSE_CSR) {
      rowSize = config_.dims(0) + 1;
      colSize = config_.size();
    } else {
      rowSize = config_.size();
      colSize = config_.dims(1) + 1;
    }
    CHECK(
        s.read(reinterpret_cast<char*>(rows.getData()), rowSize * sizeof(int)));
    CHECK(
        s.read(reinterpret_cast<char*>(cols.getData()), colSize * sizeof(int)));
463
    auto& paramRows = *intBufs_[PARAMETER_ROWS].get();
Z
zhangjinchao01 已提交
464 465 466
    if (typeid(paramRows) == typeid(GpuIVector)) {
      intBufs_[PARAMETER_ROWS]->copyFrom(rows);
    }
467
    auto& paramCols = *intBufs_[PARAMETER_COLS].get();
Z
zhangjinchao01 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    if (typeid(paramCols) == typeid(GpuIVector)) {
      intBufs_[PARAMETER_COLS]->copyFrom(cols);
    }
  }

  setValueUpdated();

  return true;
}

ThreadLocal<std::vector<VectorPtr>> Parameter::tlsTempBufs_;

VectorPtr* Parameter::getTlsTempBufs() {
  std::vector<VectorPtr>& bufs = *tlsTempBufs_;
  if (bufs.empty()) {
    bufs.resize(NUM_PARAMETER_TYPES);
    for (auto& vec : bufs) {
      vec.reset(new CpuVector(0, nullptr));
    }
  }
  return bufs.data();
}

void Parameter::exec(ExecFunc func) {
  auto execFunc = [this, func](int tid, size_t numThreads) {
    if (numThreads == 1) {  // single thread
      func(this->getBufs());
    } else {  // multi thread
      VectorPtr* vecs = Parameter::getTlsTempBufs();
497 498
      auto interval = calcSplitArrayInterval(
          this->getSize(), (size_t)tid, numThreads, 8LU /*for avx*/);
Z
zhangjinchao01 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511
      for (size_t i = 0; i < (size_t)NUM_PARAMETER_TYPES; ++i) {
        if (bufs_[i]) {
          vecs[i]->subVecFrom(*bufs_[i], interval);
        }
      }
      func(vecs);
    }
  };

  getBuf(PARAMETER_VALUE)->exec(execFunc);
}

}  // namespace paddle