k8s_aws_en.md 24.2 KB
Newer Older
D
Darcy 已提交
1

2
# Distributed PaddlePaddle Training on AWS with Kubernetes
Y
Yi Wang 已提交
3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
We will show you step by step on how to run distributed PaddlePaddle training on AWS cluster with Kubernetes. Let's start from core concepts.

## Distributed PaddlePaddle Training Core Concepts

### Distributed Training Job

A distributed training job is represented by a [Kubernetes job](https://kubernetes.io/docs/user-guide/jobs/#what-is-a-job).

Each Kuberentes job is described by a job config file, which specifies the information like the number of [pods](https://kubernetes.io/docs/user-guide/pods/#what-is-a-pod) in the job and environment variables.

In a distributed training job, we would:

1. prepare partitioned training data and configuration file on a distributed file system (in this tutorial we use Amazon Elastic File System), and
1. create and submit the Kubernetes job config to the Kubernetes cluster to start the training job.

### Parameter Servers and Trainers

There are two roles in a PaddlePaddle cluster: *parameter server (pserver)* and *trainer*. Each parameter server process maintains a shard of the global model. Each trainer has its local copy of the model, and uses its local data to update the model. During the training process, trainers send model updates to parameter servers, parameter servers are responsible for aggregating these updates, so that trainers can synchronize their local copy with the global model.

<center>![Model is partitioned into two shards. Managed by two parameter servers respectively.](src/pserver_and_trainer.png)</center>

In order to communicate with pserver, trainer needs to know the ip address of each pserver. In kubernetes it's better to use a service discovery mechanism (e.g., DNS hostname) rather than static ip address, since any pserver's pod may be killed and a new pod could be schduled onto another node of different ip address. However, now we are using static ip. This will be improved.

Parameter server and trainer are packaged into a same docker image. They will run once pod is scheduled by kubernetes job.

### Trainer ID

Each trainer process requires a trainer ID, a zero-based index value, passed in as a command-line parameter. The trainer process thus reads the data partition indexed by this ID.

### Training

The entry-point of a container is a shell script. It can see some environment variables pre-defined by Kubernetes. This includes one that gives the job's identity, which can be used in a remote call to the Kubernetes apiserver that lists all pods in the job.

We rank each pod by sorting them by their ips. The rank of each pod could be the "pod ID". Because we run one trainer and one parameter server in each pod, we can use this "pod ID" as the trainer ID. A detailed workflow of the entry-point script is as follows:

1. Query the api server to get pod information, and assign the `trainer_id` by sorting the ip.
1. Copy the training data from EFS persistent volume into container.
1. Parse the `paddle pserver` and `paddle trainer` startup parameters from environment variables, and then start up the processes.
1. Trainer with `train_id` 0 will automatically write results onto EFS volume.


## PaddlePaddle on AWS with Kubernetes

X
xichen 已提交
47 48 49 50 51 52
### Choose AWS Service Region
This tutorial requires several AWS services work in the same region. Before we create anything in AWS, please check the following link
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
Choose a region which has the following services available: EC2, EFS, VPS, CloudFormation, KMS, VPC, S3.
In this tutorial, we use "Oregon(us-west-2)" as example.

53
### Create AWS Account and IAM Account
Y
Yi Wang 已提交
54

H
Helin Wang 已提交
55
Under each AWS account, we can create multiple [IAM](http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html) users. This allows us to grant some privileges to each IAM user and to create/operate AWS clusters as an IAM user.
Y
Yi Wang 已提交
56 57 58 59

To sign up an AWS account, please
follow
[this guide](http://docs.aws.amazon.com/lambda/latest/dg/setting-up.html).
60
To create IAM users and user groups under an AWS account, please
Y
Yi Wang 已提交
61 62 63
follow
[this guide](http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html).

64
Please be aware that this tutorial needs the following privileges for the user in IAM:
Y
Yi Wang 已提交
65 66 67 68 69 70 71 72 73 74

- AmazonEC2FullAccess
- AmazonS3FullAccess
- AmazonRoute53FullAccess
- AmazonRoute53DomainsFullAccess
- AmazonElasticFileSystemFullAccess
- AmazonVPCFullAccess
- IAMUserSSHKeys
- IAMFullAccess
- NetworkAdministrator
75
- AWSKeyManagementServicePowerUser
Y
Yi Wang 已提交
76 77


78 79 80
### Download kube-aws and kubectl

#### kube-aws
81

82
[kube-aws](https://github.com/coreos/kube-aws) is a CLI tool to automate cluster deployment to AWS.
X
xichen 已提交
83
##### Verify kube-aws integrity
84
Note: if you are using a non-official release (e.g RC release) kube-aws, you can skip this setp.
85 86 87 88 89 90 91 92 93 94 95 96 97
Import the CoreOS Application Signing Public Key:

```
gpg2 --keyserver pgp.mit.edu --recv-key FC8A365E
```

Validate the key fingerprint:

```
gpg2 --fingerprint FC8A365E
```
The correct key fingerprint is `18AD 5014 C99E F7E3 BA5F 6CE9 50BD D3E0 FC8A 365E`

H
Helin Wang 已提交
98
We can download `kube-aws` from its [release page](https://github.com/coreos/kube-aws/releases). In this tutorial, we use version 0.9.1
99 100 101 102 103 104 105 106 107 108

Validate the tarball's GPG signature:

```
PLATFORM=linux-amd64
 # Or
PLATFORM=darwin-amd64

gpg2 --verify kube-aws-${PLATFORM}.tar.gz.sig kube-aws-${PLATFORM}.tar.gz
```
109
##### Install kube-aws
110 111 112 113 114 115 116 117 118 119 120 121 122
Extract the binary:

```
tar zxvf kube-aws-${PLATFORM}.tar.gz
```

Add kube-aws to your path:

```
mv ${PLATFORM}/kube-aws /usr/local/bin
```


123 124 125
#### kubectl

[kubectl](https://kubernetes.io/docs/user-guide/kubectl-overview/) is a command line interface for running commands against Kubernetes clusters.
126

127
Download `kubectl` from the Kubernetes release artifact site with the `curl` tool.
128 129

```
130 131 132 133 134
# OS X
curl -O https://storage.googleapis.com/kubernetes-release/release/"$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)"/bin/darwin/amd64/kubectl

# Linux
curl -O https://storage.googleapis.com/kubernetes-release/release/"$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)"/bin/linux/amd64/kubectl
135 136
```

137 138 139 140 141 142
Make the kubectl binary executable and move it to your PATH (e.g. `/usr/local/bin`):

```
chmod +x ./kubectl
sudo mv ./kubectl /usr/local/bin/kubectl
```
143

144
### Configure AWS Credentials
Z
zhouti 已提交
145

146
First check out [this](http://docs.aws.amazon.com/cli/latest/userguide/installing.html) for installing the AWS command line interface.
Z
zhouti 已提交
147 148

And then configure your AWS account information:
149 150 151 152

```
aws configure
```
Z
zhouti 已提交
153 154


155
Fill in the required fields:
Z
zhouti 已提交
156

157 158 159 160

```
AWS Access Key ID: YOUR_ACCESS_KEY_ID
AWS Secrete Access Key: YOUR_SECRETE_ACCESS_KEY
161
Default region name: us-west-2
162 163 164
Default output format: json
```

165 166
`YOUR_ACCESS_KEY_ID`, and `YOUR_SECRETE_ACCESS_KEY` is the IAM key and secret from [Create AWS Account and IAM Account](#create-aws-account-and-iam-account)

167
Verify that your credentials work by describing any instances you may already have running on your account:
Z
zhouti 已提交
168

169 170 171 172
```
aws ec2 describe-instances
```

173
### Define Cluster Parameters
174

175
#### EC2 key pair
176 177 178

The keypair that will authenticate SSH access to your EC2 instances. The public half of this key pair will be configured on each CoreOS node.

179
Follow [EC2 Keypair User Guide](http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html) to create a EC2 key pair
180

181 182
After creating a key pair, you will use the key pair name to configure the cluster.

183 184 185 186
Key pairs are only available to EC2 instances in the same region. We are using us-west-2 in our tutorial, so make sure to creat key pairs in that region (Oregon).

Your browser will download a `key-name.pem` file which is the key to access the EC2 instances. We will use it later.

187 188

#### KMS key
Z
zhouti 已提交
189

190
Amazon KMS keys are used to encrypt and decrypt cluster TLS assets. If you already have a KMS Key that you would like to use, you can skip creating a new key and provide the Arn string for your existing key.
191

192
You can create a KMS key with the aws command line tool:
193

194
```
195
aws kms --region=us-west-2 create-key --description="kube-aws assets"
196 197 198 199
{
    "KeyMetadata": {
        "CreationDate": 1458235139.724,
        "KeyState": "Enabled",
200
        "Arn": "arn:aws:kms:us-west-2:aaaaaaaaaaaaa:key/xxxxxxxxxxxxxxxxxxx",
201 202 203 204 205 206 207 208 209
        "AWSAccountId": "xxxxxxxxxxxxx",
        "Enabled": true,
        "KeyUsage": "ENCRYPT_DECRYPT",
        "KeyId": "xxxxxxxxx",
        "Description": "kube-aws assets"
    }
}
```

210
We will need to use the value of `Arn` later.
211

212
And then let's add several inline policies in your IAM user permission.
213

214
Go to [IAM Console](https://console.aws.amazon.com/iam/home?region=us-west-2#/home). Click on button `Users`, click user that we just created, and then click on `Add inline policy` button, and select `Custom Policy`.
215

216
Paste into following inline policies:
217 218

```
219
 (Caution: node_0, node_1, node_2 directories represents PaddlePaddle node and train_id, not the Kubernetes node){
220 221 222 223 224 225 226 227 228 229
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "Stmt1482205552000",
            "Effect": "Allow",
            "Action": [
                "kms:Decrypt",
                "kms:Encrypt"
            ],
            "Resource": [
230
                "arn:aws:kms:*:AWS_ACCOUNT_ID:key/*"
231
            ]
232 233
        },
		{
234 235 236 237 238 239 240 241
            "Sid": "Stmt1482205746000",
            "Effect": "Allow",
            "Action": [
                "cloudformation:CreateStack",
                "cloudformation:UpdateStack",
                "cloudformation:DeleteStack",
                "cloudformation:DescribeStacks",
                "cloudformation:DescribeStackResource",
242 243
                "cloudformation:GetTemplate",
                "cloudformation:DescribeStackEvents"
244 245
            ],
            "Resource": [
246
                "arn:aws:cloudformation:us-west-2:AWS_ACCOUNT_ID:stack/MY_CLUSTER_NAME/*"
247 248 249 250 251
            ]
        }
    ]
}
```
252
`Version` : Its value has to be exactly "2012-10-17".
253 254 255 256 257 258
`AWS_ACCOUNT_ID`: You can get it from following command line:

```
aws sts get-caller-identity --output text --query Account
```

259 260
`MY_CLUSTER_NAME`: Pick a MY_CLUSTER_NAME that you like, you will use it later as well. 
Please note, stack name must satisfy regular expression pattern: [a-zA-Z][-a-zA-Z0-9*]*, which means no "_" or "-" in stack name, or kube-aws will throw error in later steps.
261

262
#### External DNS name
263

264 265
When the cluster is created, the controller will expose the TLS-secured API on a DNS name.

266
DNS name should have a CNAME points to cluster DNS name or an A record points to the cluster IP address.
267

X
xichen 已提交
268
We will need to use DNS name later in tutorial. If you don't already own one, you can choose any DNS name (e.g., `paddle`) and modify `/etc/hosts` to associate cluster IP with that DNS name for your local machine. And add name service (route53) in aws to associate the IP to paddle for cluster. We will find the cluster IP in later steps.
269

270
#### S3 bucket
271 272

You need to create an S3 bucket before startup the Kubernetes cluster.
273

274
There are some bugs in aws cli in creating S3 bucket, so let's use the [S3 Console](https://console.aws.amazon.com/s3/home?region=us-west-2).
275

276
Click on `Create Bucket`, fill in a unique BUCKET_NAME, and make sure region is us-west-2 (Oregon).
277 278


279
#### Initialize Assets
Z
zhouti 已提交
280

281 282 283 284 285 286 287 288 289 290
Create a directory on your local machine to hold the generated assets:

```
$ mkdir my-cluster
$ cd my-cluster
```

Initialize the cluster CloudFormation stack with the KMS Arn, key pair name, and DNS name from the previous step:

```
291 292 293
kube-aws init \
--cluster-name=MY_CLUSTER_NAME \
--external-dns-name=MY_EXTERNAL_DNS_NAME \
294 295
--region=us-west-2 \
--availability-zone=us-west-2a \
296
--key-name=KEY_PAIR_NAME \
297
--kms-key-arn="arn:aws:kms:us-west-2:xxxxxxxxxx:key/xxxxxxxxxxxxxxxxxxx"
298 299
```

300 301 302
`MY_CLUSTER_NAME`: the one you picked in [KMS key](#kms-key)

`MY_EXTERNAL_DNS_NAME`: see [External DNS name](#external-dns-name)
303

304 305 306 307
`KEY_PAIR_NAME`: see [EC2 key pair](#ec2-key-pair)

`--kms-key-arn`: the "Arn" in [KMS key](#kms-key)

308
Here `us-west-2a` is used for parameter `--availability-zone`, but supported availability zone varies among AWS accounts.
309

310
Please check if `us-west-2a` is supported by `aws ec2 --region us-west-2 describe-availability-zones`, if not switch to other supported availability zone. (e.g., `us-west-2a`, or `us-west-2b`)
311

312

313 314
There will now be a cluster.yaml file in the asset directory. This is the main configuration file for your cluster.

315 316
By default `kube-aws` will only create one worker node. Let's edit `cluster.yaml` and change `workerCount` from 1 to 3.

317

318
#### Render contents of the asset directory
319 320 321 322

In the simplest case, you can have kube-aws generate both your TLS identities and certificate authority for you.

```
323
kube-aws render credentials --generate-ca
324 325 326 327 328
```

The next command generates the default set of cluster assets in your asset directory.

```
329
kube-aws render stack
330
```
331
Assets (templates and credentials) that are used to create, update and interact with your Kubernetes cluster will be created under your current folder.
332 333


334
### Kubernetes Cluster Start Up
335

336
#### Create the instances defined in the CloudFormation template
337

338
Now let's create your cluster (choose any `PREFIX` for the command below):
339 340

```
341
kube-aws up --s3-uri s3://BUCKET_NAME/PREFIX
342 343
```

344 345 346
`BUCKET_NAME`: the bucket name that you used in [S3 bucket](#s3-bucket)


347
#### Configure DNS
348

349 350 351 352 353
You can invoke `kube-aws status` to get the cluster API endpoint after cluster creation.

```
$ kube-aws status
Cluster Name:		paddle-cluster
354
Controller DNS Name:	paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-2.elb.amazonaws.com
355 356
```

357 358 359 360
If you own a DNS name, set the A record to any of the above ip. __Or__ you can set up CNAME point to `Controller DNS Name` (`paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-2.elb.amazonaws.com`)

##### Find IP address

361 362 363
Use command `dig` to check the load balancer hostname to get the ip address.

```
364
$ dig paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-2.elb.amazonaws.com
365 366

;; QUESTION SECTION:
367
;paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-2.elb.amazonaws.com. IN A
368 369

;; ANSWER SECTION:
370 371
paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-2.elb.amazonaws.com. 59 IN A 54.241.164.52
paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-2.elb.amazonaws.com. 59 IN A 54.67.102.112
372 373 374 375
```

In the above output, both ip `54.241.164.52`, `54.67.102.112` will work.

376 377 378 379 380 381
*If you own a DNS name*, set the A record to any of the above ip. Then you can skip to the step "Access the cluster".

*If you do not own a DNS name*:
##### Update local DNS association
Edit `/etc/hosts` to associate above ip with the DNS name.
##### Add Route53 private name service in VPC
X
xichen 已提交
382
 - Open [Route53 Console](https://console.aws.amazon.com/route53/home)
383 384 385
 - Create hosted zone with following config
   - Domain name: "paddle"
   - Type: "Private hosted zone for amazon VPC"
X
xichen 已提交
386
   - VPC ID: `<Your VPC ID>`
X
xichen 已提交
387 388

   ![route53 zone setting](src/route53_create_zone.png)
389 390 391 392 393
 - Add A record
    - Click on the zone "paddle" just created
    - Click the button "Create record set"
        - Name : leave blank
        - type: "A"
X
xichen 已提交
394
        - Value: `<kube-controller ec2 private ip>`
X
xichen 已提交
395 396

        ![route53 create recordset](src/route53_create_recordset.png)
397 398 399 400
 - Verify name service
    - Connect to any instance created by kube-aws via ssh
    - Run command "host paddle", see if the ip returned is the private ip of kube-controller

401
#### Access the cluster
402 403 404 405

Once the API server is running, you should see:

```
406 407 408 409 410 411
$ kubectl --kubeconfig=kubeconfig get nodes 
NAME                                       STATUS    AGE
ip-10-0-0-134.us-west-2.compute.internal   Ready     6m
ip-10-0-0-238.us-west-2.compute.internal   Ready     6m
ip-10-0-0-50.us-west-2.compute.internal    Ready     6m
ip-10-0-0-55.us-west-2.compute.internal    Ready     6m
412
```
413

414

415
### Setup Elastic File System for Cluster
416

417
Training data is usually served on a distributed filesystem, we use Elastic File System (EFS) on AWS.
418

419 420 421 422 423
1. Create security group for EFS in [security group console](https://us-west-2.console.aws.amazon.com/ec2/v2/home?region=us-west-2#SecurityGroups:sort=groupId)
  1. Look up security group id for `paddle-cluster-sg-worker` (`sg-055ee37d` in the image below)
  <center>![](src/worker_security_group.png)</center>
  2. Add security group `paddle-efs` with `ALL TCP` inbound rule and custom source as group id of `paddle-cluster-sg-worker`. And VPC of `paddle-cluster-vpc`. Make sure availability zone is same as the one you used in [Initialize Assets](#initialize-assets).
  <center>![](src/add_security_group.png)</center>
424

425
2. Create the Elastic File System in [EFS console](https://us-west-2.console.aws.amazon.com/efs/home?region=us-west-2#/wizard/1) with `paddle-cluster-vpc` VPC. Make sure subnet is `paddle-cluster-Subnet0` andd security group is `paddle-efs`.
L
Luo Tao 已提交
426
<center>![](src/create_efs.png)</center>
Z
zhouti 已提交
427

428

429
### Start PaddlePaddle Training Demo on AWS
430

431
#### Configure Kubernetes Volume that Points to EFS
432

433
First we need to create a [PersistentVolume](https://kubernetes.io/docs/user-guide/persistent-volumes/) to provision EFS volumn.
434

435
Save following snippet as `pv.yaml`
436
```
437 438 439 440 441 442 443 444 445 446 447 448
apiVersion: v1
kind: PersistentVolume
metadata:
  name: efsvol
spec:
  capacity:
    storage: 100Gi
  accessModes:
    - ReadWriteMany
  nfs:
    server: EFS_DNS_NAME
    path: "/"
449 450
```

451
`EFS_DNS_NAME`: DNS name as shown in description of `paddle-efs` that we created. Looks similar to `fs-2cbf7385.efs.us-west-2.amazonaws.com`
452

453
Run following command to create a persistent volumn:
454
```
455
kubectl --kubeconfig=kubeconfig create -f pv.yaml
456 457
```

458
Next let's create a [PersistentVolumeClaim](https://kubernetes.io/docs/user-guide/persistent-volumes/) to claim the persistent volume.
459

460
Save following snippet as `pvc.yaml`.
461
```
462 463 464 465 466 467 468 469 470 471
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: efsvol
spec:
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 50Gi
472 473
```

474
Run following command to create a persistent volumn claim:
475
```
476
kubectl --kubeconfig=kubeconfig create -f pvc.yaml
477 478
```

479
#### Prepare Training Data
480

481
We will now launch a kubernetes job that downloads, saves and evenly splits training data into 3 shards on the persistent volumn that we just created.
482

483
save following snippet as `paddle-data-job.yaml`
484
```
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
apiVersion: batch/v1
kind: Job
metadata:
  name: paddle-data
spec:
  template:
    metadata:
      name: pi
    spec:
      containers:
      - name: paddle-data
        image: paddledev/paddle-tutorial:k8s_data
        imagePullPolicy: Always
        volumeMounts:
        - mountPath: "/efs"
          name: efs
        env:
        - name: OUT_DIR
          value: /efs/paddle-cluster-job
        - name: SPLIT_COUNT
          value: "3"
      volumes:
        - name: efs
          persistentVolumeClaim:
            claimName: efsvol
      restartPolicy: Never
511 512
```

513
Run following command to launch the job:
514
```
515
kubectl --kubeconfig=kubeconfig create -f paddle-data-job.yaml
516 517
```

518
Job may take 7 min to finish, use following command to check job status. Do not proceed until `SUCCESSFUL` for `paddle-data` job is `1`
519
```
520 521 522
$ kubectl --kubeconfig=kubeconfig get jobs
NAME          DESIRED   SUCCESSFUL   AGE
paddle-data   1         1            6m
523 524
```

H
Helin Wang 已提交
525
Data preparation is done by docker image `paddledev/paddle-tutorial:k8s_data`, see [here](src/k8s_data/README.md) for how to build this docker image and source code.
526

527
#### Start Training
528

529
Now we are ready to start paddle training job. Save following snippet as `paddle-cluster-job.yaml`
530 531 532 533 534 535 536 537 538 539 540 541 542
```
apiVersion: batch/v1
kind: Job
metadata:
  name: paddle-cluster-job
spec:
  parallelism: 3
  completions: 3
  template:
    metadata:
      name: paddle-cluster-job
    spec:
      volumes:
543 544 545
      - name: efs
        persistentVolumeClaim:
          claimName: efsvol
546 547
      containers:
      - name: trainer
548
        image: paddledev/paddle-tutorial:k8s_train
549 550 551 552 553 554 555 556 557
        command: ["bin/bash",  "-c", "/root/start.sh"]
        env:
        - name: JOB_NAME
          value: paddle-cluster-job
        - name: JOB_PATH
          value: /home/jobpath
        - name: JOB_NAMESPACE
          value: default
        - name: TRAIN_CONFIG_DIR
558
          value: quick_start
559 560 561 562 563 564 565 566 567 568
        - name: CONF_PADDLE_NIC
          value: eth0
        - name: CONF_PADDLE_PORT
          value: "7164"
        - name: CONF_PADDLE_PORTS_NUM
          value: "2"
        - name: CONF_PADDLE_PORTS_NUM_SPARSE
          value: "2"
        - name: CONF_PADDLE_GRADIENT_NUM
          value: "3"
569 570
        - name: TRAINER_COUNT
          value: "3"
571
        volumeMounts:
572 573
        - mountPath: "/home/jobpath"
          name: efs
574
        ports:
575 576 577 578 579 580 581 582 583 584 585 586
        - name: jobport0
          hostPort: 7164
          containerPort: 7164
        - name: jobport1
          hostPort: 7165
          containerPort: 7165
        - name: jobport2
          hostPort: 7166
          containerPort: 7166
        - name: jobport3
          hostPort: 7167
          containerPort: 7167
587 588 589
      restartPolicy: Never
```

590
`parallelism: 3, completions: 3` means this job will simultaneously start 3 PaddlePaddle pods, and this job will be finished when there are 3 finished pods.
591

592
`env` field represents container's environment variables, we specify PaddlePaddle parameters by environment variables.
593

594
`ports` indicates that TCP port 7164 - 7167 are exposed for communication between `pserver` ans trainer. port starts continously from `CONF_PADDLE_PORT` (7164) to `CONF_PADDLE_PORT + CONF_PADDLE_PORTS_NUM + CONF_PADDLE_PORTS_NUM_SPARSE - 1` (7167). We use multiple ports for dense and sparse paramter updates to improve latency.
595

596 597 598 599
Run following command to launch the job.
```
kubectl --kubeconfig=kubeconfig create -f paddle-claster-job.yaml
```
600

601
Inspect individual pods
602

603 604 605 606 607 608 609
```
$ kubectl --kubeconfig=kubeconfig get pods
NAME                       READY     STATUS    RESTARTS   AGE
paddle-cluster-job-cm469   1/1       Running   0          9m
paddle-cluster-job-fnt03   1/1       Running   0          9m
paddle-cluster-job-jx4xr   1/1       Running   0          9m
```
610

611
Inspect individual console output
612
```
613
kubectl --kubeconfig=kubeconfig log -f POD_NAME
614 615
```

616
`POD_NAME`: name of any pod (e.g., `paddle-cluster-job-cm469`).
617

618
Run `kubectl --kubeconfig=kubeconfig describe job paddle-cluster-job` to check training job status. It will complete in around 20 minutes.
619

H
Helin Wang 已提交
620
The details for start `pserver` and `trainer` are hidden inside docker image `paddledev/paddle-tutorial:k8s_train`, see [here](src/k8s_train/README.md) for how to build the docker image and source code.
621

622
#### Inspect Training Output
623

624
Training output (model snapshot and logs) will be saved in EFS. We can ssh into worker EC2 instance, mount EFS and check training output.
625

626
1. ssh Into Worker EC2 instance
627
```
628 629
chmod 400 key-name.pem
ssh -i key-name.pem core@INSTANCE_IP
630 631
```

632
`INSTANCE_IP`: public IP address of EC2 kubernetes worker node. Go to [EC2 console](https://us-west-2.console.aws.amazon.com/ec2/v2/home?region=us-west-2#Instances:sort=instanceId) and check `public IP` of any `paddle-cluster-kube-aws-worker` instance.
633

634
2. Mount EFS
635
```
636 637
mkdir efs
sudo mount -t nfs4 -o nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2 EFS_DNS_NAME:/ efs
638 639
```

640
`EFS_DNS_NAME`: DNS name as shown in description of `paddle-efs` that we created. Look similar to `fs-2cbf7385.efs.us-west-2.amazonaws.com`.
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
Now folder `efs` will have structure similar to:
```
-- paddle-cluster-job
    |-- ...
    |-- output
    |   |-- node_0
    |   |   |-- server.log
    |   |   `-- train.log
    |   |-- node_1
    |   |   |-- server.log
    |   |   `-- train.log
    |   |-- node_2
    |   |   |-- server.log
    |   |   `-- train.log
    |   |-- pass-00000
    |   |   |-- ___fc_layer_0__.w0
    |   |   |-- ___fc_layer_0__.wbias
    |   |   |-- done
    |   |   |-- path.txt
    |   |   `-- trainer_config.lr.py
	|   |-- pass-00001...
```
`server.log` contains log for `pserver`. `train.log` contains log for `trainer`. Model description and snapshot is stored in `pass-0000*`.
665

666
### Kubernetes Cluster Tear Down
667

668 669 670 671 672 673 674
#### Delete EFS

Go to [EFS Console](https://us-west-2.console.aws.amazon.com/efs/home?region=us-west-2) and delete the EFS volumn that we created.

#### Delete security group

Go to [Security Group Console](https://us-west-2.console.aws.amazon.com/ec2/v2/home?region=us-west-2#SecurityGroups:sort=groupId) and delete security group `paddle-efs`.
675

676 677 678 679 680 681

#### Delete S3 Bucket

Go to [S3 Console](https://console.aws.amazon.com/s3/home?region=us-west-2#) and delete the S3 bucket that we created.

#### Destroy Cluster
682

683
```
684
kube-aws destroy
685
```
686

687 688 689
The command will return immediately, but it might take 5 min to tear down the whole cluster.

You can go to [CludFormation Console](https://us-west-2.console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks?filter=active) to check destroy process.