k8s_aws_en.md 25.9 KB
Newer Older
1
# Kubernetes on AWS
Y
Yi Wang 已提交
2 3 4

## Create AWS Account and IAM Account

H
Helin Wang 已提交
5
Under each AWS account, we can create multiple [IAM](http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html) users. This allows us to grant some privileges to each IAM user and to create/operate AWS clusters as an IAM user.
Y
Yi Wang 已提交
6 7 8 9

To sign up an AWS account, please
follow
[this guide](http://docs.aws.amazon.com/lambda/latest/dg/setting-up.html).
10
To create IAM users and user groups under an AWS account, please
Y
Yi Wang 已提交
11 12 13
follow
[this guide](http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html).

14
Please be aware that this tutorial needs the following privileges for the user in IAM:
Y
Yi Wang 已提交
15 16 17 18 19 20 21 22 23 24

- AmazonEC2FullAccess
- AmazonS3FullAccess
- AmazonRoute53FullAccess
- AmazonRoute53DomainsFullAccess
- AmazonElasticFileSystemFullAccess
- AmazonVPCFullAccess
- IAMUserSSHKeys
- IAMFullAccess
- NetworkAdministrator
25
- AWSKeyManagementServicePowerUser
Y
Yi Wang 已提交
26 27 28


## PaddlePaddle on AWS
29

Z
zhouti 已提交
30
Here we will show you step by step on how to run PaddlePaddle training on AWS cluster.
31

32

33 34 35
### Download kube-aws and kubectl

#### kube-aws
36

37
[kube-aws](https://github.com/coreos/kube-aws) is a CLI tool to automate cluster deployment to AWS.
38 39 40 41 42 43 44 45 46 47 48 49 50 51

Import the CoreOS Application Signing Public Key:

```
gpg2 --keyserver pgp.mit.edu --recv-key FC8A365E
```

Validate the key fingerprint:

```
gpg2 --fingerprint FC8A365E
```
The correct key fingerprint is `18AD 5014 C99E F7E3 BA5F 6CE9 50BD D3E0 FC8A 365E`

H
Helin Wang 已提交
52
We can download `kube-aws` from its [release page](https://github.com/coreos/kube-aws/releases). In this tutorial, we use version 0.9.1
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

Validate the tarball's GPG signature:

```
PLATFORM=linux-amd64
 # Or
PLATFORM=darwin-amd64

gpg2 --verify kube-aws-${PLATFORM}.tar.gz.sig kube-aws-${PLATFORM}.tar.gz
```

Extract the binary:

```
tar zxvf kube-aws-${PLATFORM}.tar.gz
```

Add kube-aws to your path:

```
mv ${PLATFORM}/kube-aws /usr/local/bin
```


77 78 79
#### kubectl

[kubectl](https://kubernetes.io/docs/user-guide/kubectl-overview/) is a command line interface for running commands against Kubernetes clusters.
80

81
Download `kubectl` from the Kubernetes release artifact site with the `curl` tool.
82 83

```
84 85 86 87 88
# OS X
curl -O https://storage.googleapis.com/kubernetes-release/release/"$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)"/bin/darwin/amd64/kubectl

# Linux
curl -O https://storage.googleapis.com/kubernetes-release/release/"$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)"/bin/linux/amd64/kubectl
89 90
```

91 92 93 94 95 96
Make the kubectl binary executable and move it to your PATH (e.g. `/usr/local/bin`):

```
chmod +x ./kubectl
sudo mv ./kubectl /usr/local/bin/kubectl
```
97

98
### Configure AWS Credentials
Z
zhouti 已提交
99

100
First check out [this](http://docs.aws.amazon.com/cli/latest/userguide/installing.html) for installing the AWS command line interface.
Z
zhouti 已提交
101 102

And then configure your AWS account information:
103 104 105 106 107

```
aws configure

```
Z
zhouti 已提交
108 109


110
Fill in the required fields:
Z
zhouti 已提交
111

112 113 114 115

```
AWS Access Key ID: YOUR_ACCESS_KEY_ID
AWS Secrete Access Key: YOUR_SECRETE_ACCESS_KEY
116
Default region name: us-west-1
117 118 119
Default output format: json
```

120 121
`YOUR_ACCESS_KEY_ID`, and `YOUR_SECRETE_ACCESS_KEY` is the IAM key and secret from [Create AWS Account and IAM Account](#create-aws-account-and-iam-account)

122
Verify that your credentials work by describing any instances you may already have running on your account:
Z
zhouti 已提交
123

124 125 126 127
```
aws ec2 describe-instances
```

128
### Define Cluster Parameters
129

130
#### EC2 key pair
131 132 133

The keypair that will authenticate SSH access to your EC2 instances. The public half of this key pair will be configured on each CoreOS node.

134
Follow [EC2 Keypair docs](http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html) to create a EC2 key pair
135

136 137 138
After creating a key pair, you will use the key pair name to configure the cluster.

Key pairs are only available to EC2 instances in the same region. We are using us-west-1 in our tutorial, so make sure to creat key pairs in that region (N. California).
139 140

#### KMS key
Z
zhouti 已提交
141

142
Amazon KMS keys are used to encrypt and decrypt cluster TLS assets. If you already have a KMS Key that you would like to use, you can skip creating a new key and provide the Arn string for your existing key.
143

144
You can create a KMS key in the AWS console, or with the aws command line tool:
145

146
```
147
aws kms --region=us-west-1 create-key --description="kube-aws assets"
148 149 150 151
{
    "KeyMetadata": {
        "CreationDate": 1458235139.724,
        "KeyState": "Enabled",
152
        "Arn": "arn:aws:kms:us-west-1:aaaaaaaaaaaaa:key/xxxxxxxxxxxxxxxxxxx",
153 154 155 156 157 158 159 160 161
        "AWSAccountId": "xxxxxxxxxxxxx",
        "Enabled": true,
        "KeyUsage": "ENCRYPT_DECRYPT",
        "KeyId": "xxxxxxxxx",
        "Description": "kube-aws assets"
    }
}
```

162
We will need to use the value of `Arn` later.
163

164 165
And then you need to add several inline policies in your user permission.

166
Go to IAM user page, click on `Add inline policy` button, and then select `Custom Policy`
167 168

paste into following inline policies:
169 170 171 172 173 174 175 176 177 178 179 180 181

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "Stmt1482205552000",
            "Effect": "Allow",
            "Action": [
                "kms:Decrypt",
                "kms:Encrypt"
            ],
            "Resource": [
182
                "arn:aws:kms:*:AWS_ACCOUNT_ID:key/*"
183
            ]
184 185
        },
		{
186 187 188 189 190 191 192 193
            "Sid": "Stmt1482205746000",
            "Effect": "Allow",
            "Action": [
                "cloudformation:CreateStack",
                "cloudformation:UpdateStack",
                "cloudformation:DeleteStack",
                "cloudformation:DescribeStacks",
                "cloudformation:DescribeStackResource",
194 195
                "cloudformation:GetTemplate",
                "cloudformation:DescribeStackEvents"
196 197
            ],
            "Resource": [
198
                "arn:aws:cloudformation:us-west-1:AWS_ACCOUNT_ID:stack/MY_CLUSTER_NAME/*"
199 200 201 202 203 204
            ]
        }
    ]
}
```

205 206 207 208 209 210 211
`AWS_ACCOUNT_ID`: You can get it from following command line:

```
aws sts get-caller-identity --output text --query Account
```

`MY_CLUSTER_NAME`: Pick a MY_CLUSTER_NAME that you like, you will use it later as well.
212

213
#### External DNS name
214

215 216 217 218 219
When the cluster is created, the controller will expose the TLS-secured API on a DNS name.

The A record of that DNS name needs to be point to the cluster ip address.

We will need to use DNS name later in tutorial. If you don't already own one, you can choose any DNS name (e.g., `paddle`) and modify `/etc/hosts` to associate cluster ip with that DNS name.
220

221
#### S3 bucket
222 223

You need to create an S3 bucket before startup the Kubernetes cluster.
224

H
Helin Wang 已提交
225
There are some bugs in aws cli in creating S3 bucket, so let's use the [Web console](https://console.aws.amazon.com/s3/home?region=us-west-1).
226

227
Click on `Create Bucket`, fill in a unique BUCKET_NAME, and make sure region is us-west-1 (Northern California).
228 229 230


#### Initialize an asset directory
Z
zhouti 已提交
231

232 233 234 235 236 237 238 239 240 241
Create a directory on your local machine to hold the generated assets:

```
$ mkdir my-cluster
$ cd my-cluster
```

Initialize the cluster CloudFormation stack with the KMS Arn, key pair name, and DNS name from the previous step:

```
242 243 244
kube-aws init \
--cluster-name=MY_CLUSTER_NAME \
--external-dns-name=MY_EXTERNAL_DNS_NAME \
245
--region=us-west-1 \
246 247
--availability-zone=us-west-1a \
--key-name=KEY_PAIR_NAME \
248
--kms-key-arn="arn:aws:kms:us-west-1:xxxxxxxxxx:key/xxxxxxxxxxxxxxxxxxx"
249 250
```

251 252 253
`MY_CLUSTER_NAME`: the one you picked in [KMS key](#kms-key)

`MY_EXTERNAL_DNS_NAME`: see [External DNS name](#external-dns-name)
254

255 256 257 258 259 260 261 262 263
`KEY_PAIR_NAME`: see [EC2 key pair](#ec2-key-pair)

`--kms-key-arn`: the "Arn" in [KMS key](#kms-key)

Here `us-west-1a` is used for parameter `--availability-zone`, but supported availability zone varies among AWS accounts.

Please check if `us-west-1a` is supported by `aws ec2 --region us-west-1 describe-availability-zones`, if not switch to other supported availability zone. (e.g., `us-west-1a`, or `us-west-1b`)

Note: please don't use `us-west-1c`. Subnets can currently only be created in the following availability zones: us-west-1b, us-west-1a.
264

265 266
There will now be a cluster.yaml file in the asset directory. This is the main configuration file for your cluster.

267

268
#### Render contents of the asset directory
269 270 271 272

In the simplest case, you can have kube-aws generate both your TLS identities and certificate authority for you.

```
273
kube-aws render credentials --generate-ca
274 275 276 277 278
```

The next command generates the default set of cluster assets in your asset directory.

```
279
kube-aws render stack
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
```

Here's what the directory structure looks like:

```
$ tree
.
├── cluster.yaml
├── credentials
│   ├── admin-key.pem
│   ├── admin.pem
│   ├── apiserver-key.pem
│   ├── apiserver.pem
│   ├── ca-key.pem
│   ├── ca.pem
│   ├── worker-key.pem
│   └── worker.pem
│   ├── etcd-key.pem
│   └── etcd.pem
│   ├── etcd-client-key.pem
│   └── etcd-client.pem
├── kubeconfig
├── stack-template.json
└── userdata
    ├── cloud-config-controller
    └── cloud-config-worker
```

These assets (templates and credentials) are used to create, update and interact with your Kubernetes cluster.


311
### Kubernetes Cluster Start Up
312

313
#### Create the instances defined in the CloudFormation template
314

315
Now let's create your cluster (choose any PREFIX for the command below):
316 317

```
318
kube-aws up --s3-uri s3://BUCKET_NAME/PREFIX
319 320
```

321 322 323
`BUCKET_NAME`: the bucket name that you used in [S3 bucket](#s3-bucket)


324
#### Configure DNS
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
You can invoke `kube-aws status` to get the cluster API endpoint after cluster creation.

```
$ kube-aws status
Cluster Name:		paddle-cluster
Controller DNS Name:	paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-1.elb.amazonaws.com
```

Use command `dig` to check the load balancer hostname to get the ip address.

```
$ dig paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-1.elb.amazonaws.com

;; QUESTION SECTION:
;paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-1.elb.amazonaws.com. IN A

;; ANSWER SECTION:
paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-1.elb.amazonaws.com. 59 IN A 54.241.164.52
paddle-cl-ElbAPISe-EEOI3EZPR86C-531251350.us-west-1.elb.amazonaws.com. 59 IN A 54.67.102.112
```

In the above output, both ip `54.241.164.52`, `54.67.102.112` will work.

If you own a DNS name, set the A record to any of the above ip. Otherwise you can edit `/etc/hosts` to associate ip with the DNS name.
350

351
#### Access the cluster
352 353 354 355 356 357 358 359 360 361

Once the API server is running, you should see:

```
$ kubectl --kubeconfig=kubeconfig get nodes
NAME                                       STATUS                     AGE
ip-10-0-0-xxx.us-west-1.compute.internal   Ready                      5m
ip-10-0-0-xxx.us-west-1.compute.internal   Ready                      5m
ip-10-0-0-xx.us-west-1.compute.internal    Ready,SchedulingDisabled   5m
```
362

363

364
### Setup Elastic File System for Cluster
365

366
Training data is usually served on a distributed filesystem, we use Elastic File System (EFS) on AWS. Ceph might be a better solution, but it requires high version of Linux kernel that might not be stable enough at this moment. We haven't automated the EFS setup at this moment, so please do the following steps:
367 368


Z
zhouti 已提交
369
1. Make sure you added AmazonElasticFileSystemFullAccess policy in your group.
370

371
1. Create the Elastic File System in AWS console, and attach the new VPC with it.
L
Luo Tao 已提交
372
<center>![](src/create_efs.png)</center>
Z
zhouti 已提交
373

374 375

1. Modify the Kubernetes security group under ec2/Security Groups, add additional inbound policy "All TCP TCP 0 - 65535 0.0.0.0/0" for Kubernetes default VPC security group. 
L
Luo Tao 已提交
376
<center>![](src/add_security_group.png)</center>
377 378 379


1. Follow the EC2 mount instruction to mount the disk onto all the Kubernetes nodes, we recommend to mount EFS disk onto ~/efs.
L
Luo Tao 已提交
380
<center>![](src/efs_mount.png)</center>
381 382


383 384 385 386 387
We will place user config and divided training data onto EFS. Training task will cache related files by copying them from EFS into container. It will also write the training results back onto EFS. We will show you how to place the data later in this article.



### Core Concepts of PaddlePaddle Training on AWS
388

389
Now we've already setup a 3 nodes distributed Kubernetes cluster, and on each node we've attached the EFS volume. In this training demo, we will create three Kubernetes pods and schedule them on three nodes. Each pod contains a PaddlePaddle container. When container gets created, it will start parameter server (pserver) and trainer process, load the training data from EFS volume and start the distributed training task.
390

391
#### Distributed Training Job
392

H
Helin Wang 已提交
393
A distributed training job is represented by a [kubernetes job](https://kubernetes.io/docs/user-guide/jobs/#what-is-a-job).
394

H
Helin Wang 已提交
395
Each Kuberentes job is described by a job config file, which specifies the information like the number of pods in the job and environment variables.
396

H
Helin Wang 已提交
397
In a distributed training job, we would:
398

H
Helin Wang 已提交
399 400
1. upload the partitioned training data and configuration file onto EFS volume, and
1. create and submit the Kubernetes job config to the Kubernetes cluster to start the training job.
401

H
Helin Wang 已提交
402
#### Parameter Servers and Trainers
403

404
There are two roles in a PaddlePaddle cluster: `parameter server` and `trainer`. Each parameter server process maintains a shard of the global model. Each trainer has its local copy of the model, and uses its local data to update the model. During the training process, trainers send model updates to parameter servers, parameter servers are responsible for aggregating these updates, so that trainers can synchronize their local copy with the global model.
405

406
<center>![Model is partitioned into two shards. Managed by two parameter servers respectively.](src/pserver_and_trainer.png)</center>
407

408
In order to communicate with pserver, trainer needs to know the ip address of each pserver. In kubernetes it's better to use a service discovery mechanism (e.g., DNS hostname) rather than static ip address, since any pserver's pod may be killed and a new pod could be schduled onto another node of different ip address. We will improve paddlepaddle's service discovery ability. For now we will use static ip.
409

410
Parameter server and trainer are packaged into a same docker image. They will run once pod is scheduled by kubernetes job.
411

412
#### Trainer ID
413

H
Helin Wang 已提交
414
Each trainer process requires a trainer ID, a zero-based index value, passed in as a command-line parameter. The trainer process thus reads the data partition indexed by this ID.
415

416
#### Training
417

H
Helin Wang 已提交
418
The entry-point of a container is a Python script. As it runs in a pod, it can see some environment variables pre-defined by Kubernetes. This includes one that gives the job's identity, which can be used in a remote call to the Kubernetes apiserver that lists all pods in the job.
419

H
Helin Wang 已提交
420
We rank each pod by sorting them by their ips. The rank of each pod could be the "pod ID". Because we run one trainer and one parameter server in each pod, we can use this "pod ID" as the trainer ID. A detailed workflow of the entry-point script is as follows:
421 422

1. Query the api server to get pod information, and assign the `trainer_id` by sorting the ip.
423
1. Copy the training data from EFS sharing volume into container.
424 425
1. Parse the `paddle pserver` and `paddle trainer` startup parameters from environment variables, and then start up the processes.
1. Trainer with `train_id` 0 will automatically write results onto EFS volume.
426 427


428
### Start PaddlePaddle Training Demo on AWS
429

430 431 432 433
Now we'll start a PaddlePaddle training demo on AWS, steps are as follows:

1. Build PaddlePaddle Docker image.
1. Divide the training data file and upload it onto the EFS sharing volume.
434
1. Create the training job config file, and start up the job.
435 436
1. Check the result after training.

437
#### Build PaddlePaddle Docker Image
438

439
PaddlePaddle docker image need to provide the runtime environment for `pserver` and `trainer`, so the container use this image should have two main function:
440 441

1. Copy the training data into container.
442 443
1. Generate the startup parameter for `pserver` and `trainer` process, and startup the training.

444

445
We need to create a new image since official `paddledev/paddle:cpu-latest` only have PaddlePaddle binary, but lack of the above functionalities.
446

447
Dockerfile for creating the new image is as follows:
448 449

```
450 451 452 453 454 455 456
FROM paddledev/paddle:cpu-latest

MAINTAINER zjsxzong89@gmail.com

COPY start.sh /root/
COPY start_paddle.py /root/
CMD ["bash"," -c","/root/start.sh"]
457 458
```

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
At this point, we will copy our `start.sh` and `start_paddle.py` file into container, and then exec `start_paddle.py` script to start up the training, all the steps like assigning trainer_id, getting other nodes' ip are implemented in `start_paddle.py`.

`start_paddle.py` will start parsing the parameters.

```
parser = argparse.ArgumentParser(prog="start_paddle.py",
                                     description='simple tool for k8s')
    args, train_args_list = parser.parse_known_args()
    train_args = refine_unknown_args(train_args_list)
    train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))
    podlist = getPodList()
```

And then using function `getPodList()` to query all the pod information from the job name through Kubernetes api server. When all the pods are in the running status, using `getIdMap(podlist)` to get the trainer_id.

```
    podlist = getPodList()
    # need to wait until all pods are running
    while not isPodAllRunning(podlist):
        time.sleep(10)
        podlist = getPodList()
    idMap = getIdMap(podlist)
```

In function `getIdMap(podlist)`, we use podlist to get the ip address for each pod and sort them, use the index as the trainer_id.

```
def getIdMap(podlist):
    '''
    generate tainer_id by ip
    '''
    ips = []
    for pod in podlist["items"]:
        ips.append(pod["status"]["podIP"])
    ips.sort()
    idMap = {}
    for i in range(len(ips)):
        idMap[ips[i]] = i
    return idMap
```

After getting `idMap`, we use function `startPaddle(idMap, train_args_dict)` to generate `paddle pserver` and `paddle train` start up parameters and then start up the processes.

In function `startPaddle`, the most important work is to generate `paddle pserver` and `paddle train` start up parameters. For example, `paddle train` parameter parsing, we will get parameters like `PADDLE_NIC`, `PADDLE_PORT`, `PADDLE_PORTS_NUM`, and get the `trainer_id` from `idMap`.

```
    program = 'paddle train'
    args = " --nics=" + PADDLE_NIC
    args += " --port=" + str(PADDLE_PORT)
    args += " --ports_num=" + str(PADDLE_PORTS_NUM)
    args += " --comment=" + "paddle_process_by_paddle"
    ip_string = ""
    for ip in idMap.keys():
        ip_string += (ip + ",")
    ip_string = ip_string.rstrip(",")
    args += " --pservers=" + ip_string
    args_ext = ""
    for key, value in train_args_dict.items():
        args_ext += (' --' + key + '=' + value)
    localIP = socket.gethostbyname(socket.gethostname())
    trainerId = idMap[localIP]
    args += " " + args_ext + " --trainer_id=" + \
        str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT
```

Use `docker build` to build toe Docker Image:

```
docker build -t your_repo/paddle:mypaddle .
```

And then push the built image onto docker registry.

```
docker push  your_repo/paddle:mypaddle
```

536
#### Upload Training Data File
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

Here we will use PaddlePaddle's official recommendation demo as the content for this training, we put the training data file into a directory named by job name, which located in EFS sharing volume, the tree structure for the directory looks like:

```
efs
└── paddle-cluster-job
    ├── data
    │   ├── 0
    │   │
    │   ├── 1
    │   │
    │   └── 2
    ├── output
    └── recommendation
```

H
Helin Wang 已提交
553
The `paddle-cluster-job` directory is the job name for this training, this training includes 3 PaddlePaddle node, we store the partitioned data under `paddle-cluster-job/data` directory, directory 0, 1, 2 each represent 3 nodes' trainer_id. the training data in in recommendation directory, the training results and logs will be in the output directory.
554 555


556
#### Create Kubernetes Job
557 558 559 560 561

Kubernetes use yaml file to describe job details, and then use command line tool to create the job in Kubernetes cluster.

In yaml file, we describe the Docker image we use for this training, the node number we need to startup, the volume mounting information and all the necessary parameters we need for `paddle pserver` and `paddle train` processes.

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
The yaml file content is as follows:

```
apiVersion: batch/v1
kind: Job
metadata:
  name: paddle-cluster-job
spec:
  parallelism: 3
  completions: 3
  template:
    metadata:
      name: paddle-cluster-job
    spec:
      volumes:
      - name: jobpath
        hostPath:
          path: /home/admin/efs
      containers:
      - name: trainer
        image: drinkcode/paddle:k8s-job
        command: ["bin/bash",  "-c", "/root/start.sh"]
        env:
        - name: JOB_NAME
          value: paddle-cluster-job
        - name: JOB_PATH
          value: /home/jobpath
        - name: JOB_NAMESPACE
          value: default
        - name: TRAIN_CONFIG_DIR
          value: recommendation
        - name: CONF_PADDLE_NIC
          value: eth0
        - name: CONF_PADDLE_PORT
          value: "7164"
        - name: CONF_PADDLE_PORTS_NUM
          value: "2"
        - name: CONF_PADDLE_PORTS_NUM_SPARSE
          value: "2"
        - name: CONF_PADDLE_GRADIENT_NUM
          value: "3"
        volumeMounts:
        - name: jobpath
          mountPath: /home/jobpath
        ports:
        - name: jobport
          hostPort: 30001
          containerPort: 30001
      restartPolicy: Never

```

614 615 616 617 618 619 620
In yaml file, the metadata's name is the job's name. `parallelism, completions` means this job will simultaneously start up 3 PaddlePaddle nodes, and this job will be finished when there are 3 finished pods. For the data store volume, we declare the path jobpath, it mount the /home/admin/efs on host machine into the container with path /home/jobpath. So in container, the /home/jobpath actually stores the data onto EFS sharing volume.

`env` field represents container's environment variables, we pass the PaddlePaddle parameters into containers by using the `env` field.

`JOB_PATH` represents the sharing volume path, `JOB_NAME` represents job name, `TRAIN_CONFIG_DIR` represents the training data file directory, we can these three parameters to get the file path for this training.

`CONF_PADDLE_NIC` represents `paddle pserver` process's `--nics` parameters, the NIC name.
621

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
`CONF_PADDLE_PORT` represents `paddle pserver` process's `--port` parameters, `CONF_PADDLE_PORTS_NUM` represents `--port_num` parameter.

`CONF_PADDLE_PORTS_NUM_SPARSE` represents the sparse updated port number, `--ports_num_for_sparse` parameter.

`CONF_PADDLE_GRADIENT_NUM` represents the training node number, `--num_gradient_servers` parameter.

After we create the yaml file, we can use Kubernetes command line tool to create the job onto the cluster.

```
kubectl create -f job.yaml
```

After we execute the above command, Kubernetes will create 3 pods and then pull the PaddlePaddle image, then start up the containers for training.



638
#### Check Training Results
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

During the training, we can see the logs and models on EFS sharing volume, the output directory contains the training results. (Caution: node_0, node_1, node_2 directories represents PaddlePaddle node and train_id, not the Kubernetes node)

```
[root@paddle-kubernetes-node0 output]# tree -d
.
├── node_0
│   ├── server.log
│   └── train.log
├── node_1
│   ├── server.log
│   └── train.log
├── node_2
......
├── pass-00002
│   ├── done
│   ├── ___embedding_0__.w0
│   ├── ___embedding_1__.w0
......
```

We can always check the container training status through logs, for example:

```
[root@paddle-kubernetes-node0 node_0]# cat train.log
I1116 09:10:17.123121    50 Util.cpp:155] commandline:
 /usr/local/bin/../opt/paddle/bin/paddle_trainer
    --nics=eth0 --port=7164
    --ports_num=2 --comment=paddle_process_by_paddle
    --pservers=192.168.129.66,192.168.223.143,192.168.129.71
    --ports_num_for_sparse=2 --config=./trainer_config.py
    --trainer_count=4 --num_passes=10 --use_gpu=0 
    --log_period=50 --dot_period=10 --saving_period=1 
    --local=0 --trainer_id=0
    --save_dir=/home/jobpath/paddle-cluster-job/output
I1116 09:10:17.123440    50 Util.cpp:130] Calling runInitFunctions
I1116 09:10:17.123764    50 Util.cpp:143] Call runInitFunctions done.
[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config.
[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating]
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__regression_cost_0__]
I1116 09:10:17.392917    50 Trainer.cpp:170] trainer mode: Normal
I1116 09:10:17.613910    50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.680917    50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.681543    50 GradientMachine.cpp:134] Initing parameters..
I1116 09:10:18.012390    50 GradientMachine.cpp:141] Init parameters done.
I1116 09:10:18.018641    50 ParameterClient2.cpp:122] pserver 0 192.168.129.66:7164
I1116 09:10:18.018950    50 ParameterClient2.cpp:122] pserver 1 192.168.129.66:7165
I1116 09:10:18.019069    50 ParameterClient2.cpp:122] pserver 2 192.168.223.143:7164
I1116 09:10:18.019492    50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:7165
I1116 09:10:18.019716    50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164
I1116 09:10:18.019836    50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165
```

692
It'll take around 8 hours to finish this PaddlePaddle recommendation training demo on three 2 core 8 GB EC2 machine (m3.large).
693 694


695
### Kubernetes Cluster Tear Down
696 697


Z
zhouti 已提交
698
If you want to tear down the whole Kubernetes cluster, make sure to *delete* the EFS volume first (otherwise, you will get stucked on following steps), and then use the following command:
699

700
```
701
kube-aws destroy
702
```
703 704 705
It's an async call, it might take 5 min to tear down the whole cluster.

If you created any Kubernetes Services of type LoadBalancer, you must delete these first, as the CloudFormation cannot be fully destroyed if any externally-managed resources still exist.