reshape_op.cc 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/reshape_op.h"
Y
Yibing Liu 已提交
16 17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

27
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
28
    // input check
Q
Qiao Longfei 已提交
29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReshapeOp should not be null.");
33

Y
ying 已提交
34 35 36 37 38 39
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    PADDLE_ENFORCE_EQ(shape.empty(), ctx->HasInput("Shape"),
                      "The shape information can only be set by Attr(shape) or "
                      "by Input(Shape). Attr(shape) and Input(Shape) cannot be "
                      "set at the same time.");

Q
Qiao Longfei 已提交
40
    auto x_dims = ctx->GetInputDim("X");
41

Y
ying 已提交
42
    if (ctx->HasInput("Shape")) {
C
caoying03 已提交
43
      // The shape information in given by Input(Shape).
Y
ying 已提交
44
      auto shape_dims = ctx->GetInputDim("Shape");
45

Y
ying 已提交
46 47 48 49
      PADDLE_ENFORCE(shape_dims.size() == 2UL && shape_dims[0] == 1UL,
                     "The Input(Label) should be a 2-D tensor with the 1st "
                     "dimensions fixed to 1 (a row vector).");

C
caoying03 已提交
50
      // The actual output shape will be set at runtime, here temporially set
Y
ying 已提交
51 52 53
      // the shape of output the same as the shape of input.
      ctx->SetOutputDim("Out", x_dims);
    } else {
C
caoying03 已提交
54
      // The shape information in given by Attr(shape).
Y
ying 已提交
55 56 57 58 59 60
      std::vector<int64_t> output_shape;
      ValidateShape(shape, framework::product(x_dims), output_shape);

      auto out_dims = framework::make_ddim(output_shape);
      ctx->SetOutputDim("Out", out_dims);

C
caoying03 已提交
61 62 63 64 65
      if (shape[0] == x_dims[0]) {
        // Only pass LoD when the first dimension of output and Input(X)
        // are the same.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
D
Fix bug  
dangqingqing 已提交
66
    }
Y
Yibing Liu 已提交
67
  }
Y
ying 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

 private:
  void ValidateShape(const std::vector<int> &shape, const int64_t in_size,
                     std::vector<int64_t> &output_shape) const {
    std::vector<size_t> neg_dims_idx;
    const int unknown_index = -1;  // only one dimension canbe set to -1, whose
                                   // size will be automatically infered.

    for (size_t i = 0; i < shape.size(); ++i) {
      PADDLE_ENFORCE(shape[i] > 1 || shape[i] == unknown_index,
                     "Each input dimension of Attr(shape) must be positive, or "
                     "only one input dimension can be -1.");
      if (shape[i] == unknown_index) neg_dims_idx.push_back(i);
    }
    PADDLE_ENFORCE_LE(
        neg_dims_idx.size(), 1,
        "Only one input dimension of Attr(shape) may be unknown.");

    int64_t inferred_dim = 0;
    if (neg_dims_idx.size()) {
      int64_t capacity = std::accumulate(shape.begin(), shape.end(), 1,
                                         std::multiplies<int>());
      inferred_dim = in_size / (-capacity);
    }

    output_shape.resize(shape.size(), 0);
    std::transform(shape.begin(), shape.end(), output_shape.begin(),
                   [](int a) { return static_cast<int64_t>(a); });
    if (neg_dims_idx.size()) output_shape[neg_dims_idx[0]] = inferred_dim;
  }
C
caoying03 已提交
98 99 100 101 102 103 104 105

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
  }
Y
Yibing Liu 已提交
106 107 108 109
};

class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
110
  ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yibing Liu 已提交
111 112
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input tensor of reshape operator.");
C
caoying03 已提交
113 114 115
    AddInput(
        "Shape",
        "Tensor<int64_t>, a 1-D tensor that provides the shape information.")
Y
ying 已提交
116
        .AsDispensable();
Y
Yibing Liu 已提交
117
    AddOutput("Out", "The output tensor of reshape operator.");
C
caoying03 已提交
118 119
    AddAttr<std::vector<int>>(
        "shape", "(std::vector<int>) Target shape of reshape operator.")
Y
ying 已提交
120
        .SetDefault(std::vector<int>());
K
kexinzhao 已提交
121 122
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
123

Y
Yibing Liu 已提交
124
Reshape Input(X) into the shape specified by Attr(shape).
Y
Yibing Liu 已提交
125 126

An example:
Y
ying 已提交
127
Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]
Y
Yibing Liu 已提交
128

K
kexinzhao 已提交
129
and target shape = [1, 4], the reshape operator will transform
Y
ying 已提交
130
the tensor X into a 2-D tensor: [[1, 2, 3, 4]]
Y
Yibing Liu 已提交
131

Y
Yibing Liu 已提交
132
One dimension in the target shape can be set -1, representing that its
Y
ying 已提交
133
size is unknown. In this case, the real dimension will be infered from
Y
Yibing Liu 已提交
134
the original shape of Input(X) and other dimensions in the target shape.
Y
Yibing Liu 已提交
135 136 137 138 139 140 141 142 143 144 145 146
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

147
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
148 149 150 151
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
152
  }
C
caoying03 已提交
153 154 155 156 157 158 159 160

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
  }
Y
Yibing Liu 已提交
161 162 163 164 165
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
166
using CPU = paddle::platform::CPUDeviceContext;
Y
Yibing Liu 已提交
167 168 169

REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
            ops::ReshapeGradOp);
170 171 172 173 174 175 176 177
REGISTER_OP_CPU_KERNEL(reshape, ops::ReshapeKernel<CPU, float>,
                       ops::ReshapeKernel<CPU, double>,
                       ops::ReshapeKernel<CPU, int>,
                       ops::ReshapeKernel<CPU, int64_t>);
REGISTER_OP_CPU_KERNEL(reshape_grad, ops::ReshapeGradKernel<CPU, float>,
                       ops::ReshapeGradKernel<CPU, double>,
                       ops::ReshapeGradKernel<CPU, int>,
                       ops::ReshapeGradKernel<CPU, int64_t>);