test_LeViT.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "test_suite.h"  // NOLINT

DEFINE_string(modeldir, "", "Directory of the inference model.");

namespace paddle_infer {

paddle::test::Record PrepareInput(int batch_size) {
  // init input data
  int channel = 3;
  int width = 224;
  int height = 224;
  paddle::test::Record image_Record;
  int input_num = batch_size * channel * width * height;
  std::vector<float> input_data(input_num, 1);
  image_Record.data = input_data;
  image_Record.shape = std::vector<int>{batch_size, channel, width, height};
  image_Record.type = paddle::PaddleDType::FLOAT32;
  return image_Record;
}

TEST(test_LeViT, analysis_gpu_bz1) {
  // init input data
  std::map<std::string, paddle::test::Record> my_input_data_map;
  my_input_data_map["x"] = PrepareInput(1);
  // init output data
  std::map<std::string, paddle::test::Record> infer_output_data,
      truth_output_data;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                        FLAGS_modeldir + "/inference.pdiparams");
  config_no_ir.SwitchIrOptim(false);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                  FLAGS_modeldir + "/inference.pdiparams");
  // get groudtruth by disbale ir
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
  SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
                         &truth_output_data, 1);
  // get infer results
  paddle_infer::services::PredictorPool pred_pool(config, 1);
  SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map,
                         &infer_output_data);
  // check outputs
  CompareRecord(&truth_output_data, &infer_output_data);
  std::cout << "finish test" << std::endl;
}

TEST(test_LeViT, trt_fp32_bz2) {
  // init input data
  std::map<std::string, paddle::test::Record> my_input_data_map;
  my_input_data_map["x"] = PrepareInput(2);
  // init output data
  std::map<std::string, paddle::test::Record> infer_output_data,
      truth_output_data;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                        FLAGS_modeldir + "/inference.pdiparams");
  config_no_ir.SwitchIrOptim(false);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                  FLAGS_modeldir + "/inference.pdiparams");
  config.EnableUseGpu(100, 0);
  config.EnableTensorRtEngine(
      1 << 20, 2, 6, paddle_infer::PrecisionType::kFloat32, false, false);
  // get groudtruth by disbale ir
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
  SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
                         &truth_output_data, 1);
  // get infer results
  paddle_infer::services::PredictorPool pred_pool(config, 1);
  SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map,
                         &infer_output_data);
  // check outputs
  CompareRecord(&truth_output_data, &infer_output_data);
  std::cout << "finish test" << std::endl;
}

TEST(test_LeViT, serial_diff_batch_trt_fp32) {
  int max_batch_size = 5;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                        FLAGS_modeldir + "/inference.pdiparams");
  config_no_ir.SwitchIrOptim(false);
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                  FLAGS_modeldir + "/inference.pdiparams");
  config.EnableUseGpu(100, 0);
  config.EnableTensorRtEngine(1 << 20, max_batch_size, 6,
                              paddle_infer::PrecisionType::kFloat32, false,
                              false);
  paddle_infer::services::PredictorPool pred_pool(config, 1);

  for (int i = 1; i < max_batch_size; i++) {
    // init input data
    std::map<std::string, paddle::test::Record> my_input_data_map;
    my_input_data_map["x"] = PrepareInput(i);
    // init output data
    std::map<std::string, paddle::test::Record> infer_output_data,
        truth_output_data;
    // get groudtruth by disbale ir
    SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
                           &truth_output_data, 1);
    // get infer results
    SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map,
                           &infer_output_data);
    // check outputs
    CompareRecord(&truth_output_data, &infer_output_data);
  }
  std::cout << "finish test" << std::endl;
}

TEST(test_LeViT, multi_thread4_trt_fp32_bz2) {
  int thread_num = 4;
  // init input data
  std::map<std::string, paddle::test::Record> my_input_data_map;
  my_input_data_map["x"] = PrepareInput(2);
  // init output data
  std::map<std::string, paddle::test::Record> infer_output_data,
      truth_output_data;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                        FLAGS_modeldir + "/inference.pdiparams");
  config_no_ir.SwitchIrOptim(false);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                  FLAGS_modeldir + "/inference.pdiparams");
  config.EnableUseGpu(100, 0);
  config.EnableTensorRtEngine(
      1 << 20, 2, 6, paddle_infer::PrecisionType::kFloat32, false, false);
  // get groudtruth by disbale ir
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
  SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
                         &truth_output_data, 1);

  // get infer results from multi threads
  std::vector<std::thread> threads;
  services::PredictorPool pred_pool(config, thread_num);
  for (int i = 0; i < thread_num; ++i) {
    threads.emplace_back(paddle::test::SingleThreadPrediction,
                         pred_pool.Retrive(i), &my_input_data_map,
                         &infer_output_data, 2);
  }

  // thread join & check outputs
  for (int i = 0; i < thread_num; ++i) {
    LOG(INFO) << "join tid : " << i;
    threads[i].join();
    CompareRecord(&truth_output_data, &infer_output_data);
  }

  std::cout << "finish multi-thread test" << std::endl;
}

}  // namespace paddle_infer

int main(int argc, char** argv) {
  ::testing::InitGoogleTest(&argc, argv);
  ::google::ParseCommandLineFlags(&argc, &argv, true);
  return RUN_ALL_TESTS();
}