未验证 提交 1c31d9d3 编写于 作者: P Peihan 提交者: GitHub

add det_mv3_db & LeViT test case in pr-ci-inference (#34803)

* add det_mv3_db & LeViT test case in pr-ci-inference

* fix LeViT model dir bugs

* fix grammar error
上级 0a5c99e8
......@@ -66,7 +66,7 @@ else()
if(WITH_MKL)
set(FLAG_OPENMP "-fopenmp")
endif()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 ${FLAG_OPENMP}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++17 ${FLAG_OPENMP}")
endif()
if(WITH_GPU)
......
......@@ -65,6 +65,18 @@ for model_name in $download_list; do
download $url_prefix $model_name
done
ocr_download_list='ocr_det_mv3_db'
for model_name in $ocr_download_list; do
url_prefix="https://paddle-qa.bj.bcebos.com/inference_model/2.1.1/ocr"
download $url_prefix $model_name
done
clas_download_list='LeViT'
for model_name in $clas_download_list; do
url_prefix="https://paddle-qa.bj.bcebos.com/inference_model/2.1.1/class"
download $url_prefix $model_name
done
# compile and run test
cd $current_dir
mkdir -p build
......@@ -92,6 +104,46 @@ if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then
fi
fi
# ---------tensorrt det_mv3_db on linux---------
if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then
cmake .. -DPADDLE_LIB=${inference_install_dir} \
-DWITH_MKL=$TURN_ON_MKL \
-DDEMO_NAME=test_det_mv3_db \
-DWITH_GPU=$TEST_GPU_CPU \
-DWITH_STATIC_LIB=OFF \
-DUSE_TENSORRT=$USE_TENSORRT \
-DTENSORRT_ROOT=$TENSORRT_ROOT_DIR \
-DWITH_GTEST=ON
make -j$(nproc)
./test_det_mv3_db \
--modeldir=$DATA_DIR/ocr_det_mv3_db/ocr_det_mv3_db \
--gtest_output=xml:test_det_mv3_db.xml
if [ $? -ne 0 ]; then
echo "test_det_mv3_db runs failed" >> ${current_dir}/build/test_summary.txt
EXIT_CODE=1
fi
fi
# ---------tensorrt LeViT on linux---------
if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then
cmake .. -DPADDLE_LIB=${inference_install_dir} \
-DWITH_MKL=$TURN_ON_MKL \
-DDEMO_NAME=test_LeViT \
-DWITH_GPU=$TEST_GPU_CPU \
-DWITH_STATIC_LIB=OFF \
-DUSE_TENSORRT=$USE_TENSORRT \
-DTENSORRT_ROOT=$TENSORRT_ROOT_DIR \
-DWITH_GTEST=ON
make -j$(nproc)
./test_LeViT \
--modeldir=$DATA_DIR/LeViT/LeViT \
--gtest_output=xml:test_LeViT.xml
if [ $? -ne 0 ]; then
echo "test_LeViT runs failed" >> ${current_dir}/build/test_summary.txt
EXIT_CODE=1
fi
fi
if [[ -f ${current_dir}/build/test_summary.txt ]];then
echo "=====================test summary======================"
cat ${current_dir}/build/test_summary.txt
......
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "test_suite.h" // NOLINT
DEFINE_string(modeldir, "", "Directory of the inference model.");
namespace paddle_infer {
paddle::test::Record PrepareInput(int batch_size) {
// init input data
int channel = 3;
int width = 224;
int height = 224;
paddle::test::Record image_Record;
int input_num = batch_size * channel * width * height;
std::vector<float> input_data(input_num, 1);
image_Record.data = input_data;
image_Record.shape = std::vector<int>{batch_size, channel, width, height};
image_Record.type = paddle::PaddleDType::FLOAT32;
return image_Record;
}
TEST(test_LeViT, analysis_gpu_bz1) {
// init input data
std::map<std::string, paddle::test::Record> my_input_data_map;
my_input_data_map["x"] = PrepareInput(1);
// init output data
std::map<std::string, paddle::test::Record> infer_output_data,
truth_output_data;
// prepare groudtruth config
paddle_infer::Config config, config_no_ir;
config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config_no_ir.SwitchIrOptim(false);
// prepare inference config
config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
// get groudtruth by disbale ir
paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
&truth_output_data, 1);
// get infer results
paddle_infer::services::PredictorPool pred_pool(config, 1);
SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map,
&infer_output_data);
// check outputs
CompareRecord(&truth_output_data, &infer_output_data);
std::cout << "finish test" << std::endl;
}
TEST(test_LeViT, trt_fp32_bz2) {
// init input data
std::map<std::string, paddle::test::Record> my_input_data_map;
my_input_data_map["x"] = PrepareInput(2);
// init output data
std::map<std::string, paddle::test::Record> infer_output_data,
truth_output_data;
// prepare groudtruth config
paddle_infer::Config config, config_no_ir;
config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config_no_ir.SwitchIrOptim(false);
// prepare inference config
config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config.EnableUseGpu(100, 0);
config.EnableTensorRtEngine(
1 << 20, 2, 6, paddle_infer::PrecisionType::kFloat32, false, false);
// get groudtruth by disbale ir
paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
&truth_output_data, 1);
// get infer results
paddle_infer::services::PredictorPool pred_pool(config, 1);
SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map,
&infer_output_data);
// check outputs
CompareRecord(&truth_output_data, &infer_output_data);
std::cout << "finish test" << std::endl;
}
TEST(test_LeViT, serial_diff_batch_trt_fp32) {
int max_batch_size = 5;
// prepare groudtruth config
paddle_infer::Config config, config_no_ir;
config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config_no_ir.SwitchIrOptim(false);
paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
// prepare inference config
config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config.EnableUseGpu(100, 0);
config.EnableTensorRtEngine(1 << 20, max_batch_size, 6,
paddle_infer::PrecisionType::kFloat32, false,
false);
paddle_infer::services::PredictorPool pred_pool(config, 1);
for (int i = 1; i < max_batch_size; i++) {
// init input data
std::map<std::string, paddle::test::Record> my_input_data_map;
my_input_data_map["x"] = PrepareInput(i);
// init output data
std::map<std::string, paddle::test::Record> infer_output_data,
truth_output_data;
// get groudtruth by disbale ir
SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
&truth_output_data, 1);
// get infer results
SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map,
&infer_output_data);
// check outputs
CompareRecord(&truth_output_data, &infer_output_data);
}
std::cout << "finish test" << std::endl;
}
TEST(test_LeViT, multi_thread4_trt_fp32_bz2) {
int thread_num = 4;
// init input data
std::map<std::string, paddle::test::Record> my_input_data_map;
my_input_data_map["x"] = PrepareInput(2);
// init output data
std::map<std::string, paddle::test::Record> infer_output_data,
truth_output_data;
// prepare groudtruth config
paddle_infer::Config config, config_no_ir;
config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config_no_ir.SwitchIrOptim(false);
// prepare inference config
config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config.EnableUseGpu(100, 0);
config.EnableTensorRtEngine(
1 << 20, 2, 6, paddle_infer::PrecisionType::kFloat32, false, false);
// get groudtruth by disbale ir
paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
&truth_output_data, 1);
// get infer results from multi threads
std::vector<std::thread> threads;
services::PredictorPool pred_pool(config, thread_num);
for (int i = 0; i < thread_num; ++i) {
threads.emplace_back(paddle::test::SingleThreadPrediction,
pred_pool.Retrive(i), &my_input_data_map,
&infer_output_data, 2);
}
// thread join & check outputs
for (int i = 0; i < thread_num; ++i) {
LOG(INFO) << "join tid : " << i;
threads[i].join();
CompareRecord(&truth_output_data, &infer_output_data);
}
std::cout << "finish multi-thread test" << std::endl;
}
} // namespace paddle_infer
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
::google::ParseCommandLineFlags(&argc, &argv, true);
return RUN_ALL_TESTS();
}
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "test_suite.h" // NOLINT
DEFINE_string(modeldir, "", "Directory of the inference model.");
namespace paddle_infer {
paddle::test::Record PrepareInput(int batch_size, int image_shape = 640) {
// init input data
int channel = 3;
int width = image_shape;
int height = image_shape;
paddle::test::Record image_Record;
int input_num = batch_size * channel * width * height;
std::vector<float> input_data(input_num, 1);
image_Record.data = input_data;
image_Record.shape = std::vector<int>{batch_size, channel, width, height};
image_Record.type = paddle::PaddleDType::FLOAT32;
return image_Record;
}
void PrepareDynamicShape(paddle_infer::Config* config, int max_batch_size = 4) {
// set dynamic shape range
std::map<std::string, std::vector<int>> min_input_shape = {
{"x", {1, 3, 50, 50}},
{"conv2d_92.tmp_0", {1, 120, 20, 20}},
{"conv2d_91.tmp_0", {1, 24, 10, 10}},
{"conv2d_59.tmp_0", {1, 96, 20, 20}},
{"nearest_interp_v2_1.tmp_0", {1, 256, 10, 10}},
{"nearest_interp_v2_2.tmp_0", {1, 256, 20, 20}},
{"conv2d_124.tmp_0", {1, 256, 20, 20}},
{"nearest_interp_v2_3.tmp_0", {1, 64, 20, 20}},
{"nearest_interp_v2_4.tmp_0", {1, 64, 20, 20}},
{"nearest_interp_v2_5.tmp_0", {1, 64, 20, 20}},
{"elementwise_add_7", {1, 56, 2, 2}},
{"nearest_interp_v2_0.tmp_0", {1, 256, 2, 2}}};
std::map<std::string, std::vector<int>> max_input_shape = {
{"x", {max_batch_size, 3, 2000, 2000}},
{"conv2d_92.tmp_0", {max_batch_size, 120, 400, 400}},
{"conv2d_91.tmp_0", {max_batch_size, 24, 200, 200}},
{"conv2d_59.tmp_0", {max_batch_size, 96, 400, 400}},
{"nearest_interp_v2_1.tmp_0", {max_batch_size, 256, 200, 200}},
{"nearest_interp_v2_2.tmp_0", {max_batch_size, 256, 400, 400}},
{"conv2d_124.tmp_0", {max_batch_size, 256, 400, 400}},
{"nearest_interp_v2_3.tmp_0", {max_batch_size, 64, 400, 400}},
{"nearest_interp_v2_4.tmp_0", {max_batch_size, 64, 400, 400}},
{"nearest_interp_v2_5.tmp_0", {max_batch_size, 64, 400, 400}},
{"elementwise_add_7", {max_batch_size, 56, 400, 400}},
{"nearest_interp_v2_0.tmp_0", {max_batch_size, 256, 400, 400}}};
std::map<std::string, std::vector<int>> opt_input_shape = {
{"x", {1, 3, 640, 640}},
{"conv2d_92.tmp_0", {1, 120, 160, 160}},
{"conv2d_91.tmp_0", {1, 24, 80, 80}},
{"conv2d_59.tmp_0", {1, 96, 160, 160}},
{"nearest_interp_v2_1.tmp_0", {1, 256, 80, 80}},
{"nearest_interp_v2_2.tmp_0", {1, 256, 160, 160}},
{"conv2d_124.tmp_0", {1, 256, 160, 160}},
{"nearest_interp_v2_3.tmp_0", {1, 64, 160, 160}},
{"nearest_interp_v2_4.tmp_0", {1, 64, 160, 160}},
{"nearest_interp_v2_5.tmp_0", {1, 64, 160, 160}},
{"elementwise_add_7", {1, 56, 40, 40}},
{"nearest_interp_v2_0.tmp_0", {1, 256, 40, 40}}};
config->SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
opt_input_shape);
}
TEST(test_det_mv3_db, analysis_gpu_bz4) {
// init input data
std::map<std::string, paddle::test::Record> my_input_data_map;
my_input_data_map["x"] = PrepareInput(4, 640);
// init output data
std::map<std::string, paddle::test::Record> infer_output_data,
truth_output_data;
// prepare groudtruth config
paddle_infer::Config config, config_no_ir;
config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config_no_ir.SwitchIrOptim(false);
// prepare inference config
config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
// get groudtruth by disbale ir
paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
&truth_output_data, 1);
// get infer results
paddle_infer::services::PredictorPool pred_pool(config, 1);
SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map,
&infer_output_data);
// check outputs
CompareRecord(&truth_output_data, &infer_output_data, 1e-4);
std::cout << "finish test" << std::endl;
}
TEST(test_det_mv3_db, multi_thread2_trt_fp32_dynamic_shape_bz2) {
int thread_num = 2; // thread > 2 may OOM
// init input data
std::map<std::string, paddle::test::Record> my_input_data_map;
my_input_data_map["x"] = PrepareInput(2, 640);
// init output data
std::map<std::string, paddle::test::Record> infer_output_data,
truth_output_data;
// prepare groudtruth config
paddle_infer::Config config, config_no_ir;
config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config_no_ir.SwitchIrOptim(false);
// prepare inference config
config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
FLAGS_modeldir + "/inference.pdiparams");
config.EnableUseGpu(100, 0);
config.EnableTensorRtEngine(
1 << 20, 2, 3, paddle_infer::PrecisionType::kFloat32, false, false);
PrepareDynamicShape(&config, 4);
// get groudtruth by disbale ir
paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map,
&truth_output_data, 1);
// get infer results from multi threads
std::vector<std::thread> threads;
services::PredictorPool pred_pool(config, thread_num);
for (int i = 0; i < thread_num; ++i) {
threads.emplace_back(paddle::test::SingleThreadPrediction,
pred_pool.Retrive(i), &my_input_data_map,
&infer_output_data, 2);
}
// thread join & check outputs
for (int i = 0; i < thread_num; ++i) {
LOG(INFO) << "join tid : " << i;
threads[i].join();
CompareRecord(&truth_output_data, &infer_output_data, 1e-4);
}
std::cout << "finish multi-thread test" << std::endl;
}
} // namespace paddle_infer
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
::google::ParseCommandLineFlags(&argc, &argv, true);
return RUN_ALL_TESTS();
}
......@@ -51,7 +51,7 @@ void SingleThreadPrediction(paddle_infer::Predictor *predictor,
// inference
for (size_t i = 0; i < repeat_times; ++i) {
predictor->Run();
CHECK(predictor->Run());
}
// get output data to Record
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册