parallel_executor.cc 8.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
22
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
23
#endif
Y
Yang Yang 已提交
24

Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
26
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
27
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
28

Y
Yang Yang 已提交
29
namespace paddle {
Y
Yu Yang 已提交
30 31
namespace framework {

Y
Yu Yang 已提交
32 33 34
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
35
      : places_(places) {}
Y
Yu Yang 已提交
36 37 38 39

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
40
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
41

Y
Yu Yang 已提交
42
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
43
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
44
#endif
45
  bool own_local_scope;
Y
Yu Yang 已提交
46 47
};

48 49 50 51
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
52
ParallelExecutor::ParallelExecutor(
53
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
54
    const std::unordered_set<std::string> &params,
55 56
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
57
    Scope *scope, const std::vector<Scope *> &local_scopes,
58
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
59
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
60
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
61
  member_->global_scope_ = scope;
Y
Yu Yang 已提交
62

63
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
64
  // Create local scopes
65
  if (local_scopes.empty()) {
66
    member_->own_local_scope = true;
Y
Yu Yang 已提交
67 68
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
69
      member_->local_scopes_.emplace_back(&scope->NewScope());
70 71
    }
  } else {
72
    member_->own_local_scope = false;
73 74
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
75
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
76
    }
Y
Yu Yang 已提交
77 78
  }

Y
Yu Yang 已提交
79 80
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
T
typhoonzero 已提交
81
  auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
T
typhoonzero 已提交
82 83 84 85 86 87
  ncclUniqueId *nccl_id = nullptr;
  if (nccl_id_var != nullptr) {
    nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
  }
  member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
      member_->places_, nccl_id, num_trainers, trainer_id));
Y
Yu Yang 已提交
88
#endif
89 90 91
  if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 &&
      local_scopes.empty()) {  // Is CUDA
    BCastParamsToGPUs(bcast_vars);
Y
Yu Yang 已提交
92
  }
Y
yuyang18 已提交
93 94 95 96 97 98 99 100 101 102
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
103

Y
yuyang18 已提交
104
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
Y
Yu Yang 已提交
105 106
// ncclOp
#ifdef PADDLE_WITH_CUDA
107
  builder_.reset(new details::MultiDevSSAGraphBuilder(
Y
Yu Yang 已提交
108
      member_->places_, loss_var_name, params, member_->local_scopes_,
109 110
      member_->nccl_ctxs_.get(), build_strategy));

Y
Yu Yang 已提交
111
#else
112
  builder_.reset(new details::MultiDevSSAGraphBuilder(
Y
Yancey1989 已提交
113
      member_->places_, loss_var_name, params, member_->local_scopes_,
114 115
      build_strategy));

Y
Yu Yang 已提交
116
#endif
117
  auto graph = builder_->Build(main_program);
Y
Yu Yang 已提交
118

Y
Yu Yang 已提交
119
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
Y
yuyang18 已提交
120
      exec_strategy, member_->local_scopes_, places, std::move(graph)));
Y
Yu Yang 已提交
121

Y
yuyang18 已提交
122 123 124
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
125 126 127
}

void ParallelExecutor::BCastParamsToGPUs(
128
    const std::unordered_set<std::string> &vars) const {
Y
Yu Yang 已提交
129
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
130
  auto *main_scope = member_->local_scopes_[0];
Y
Yu Yang 已提交
131

132 133
  for (auto &var : vars) {
    auto *main_var = main_scope->FindVar(var);
J
JiayiFeng 已提交
134
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      platform::NCCLGroupGuard guard;
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
        if (i == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
150
          auto local_scope = member_->local_scopes_[i];
151
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
152
          t->Resize(dims);
153
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
154
        }
155
        auto &nccl_ctx = member_->nccl_ctxs_->at(place);
156 157 158 159 160 161 162 163 164 165

        if (builder_.get() != nullptr &&
            builder_->GetRemoteVarDevice(var) != -1) {
          int place_id = builder_->GetRemoteVarDevice(var);
          platform::dynload::ncclBcast(buffer, numel, data_type, place_id,
                                       nccl_ctx.comm_, nccl_ctx.stream());
        } else {
          platform::dynload::ncclBcast(buffer, numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
        }
166 167 168 169 170 171 172 173 174
      }
    } else {
      platform::CPUPlace cpu;
      for (size_t i = 1; i < member_->places_.size(); ++i) {
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
        t->Resize(dims);
        t->mutable_data(cpu, main_tensor.type());
        paddle::framework::TensorCopy(main_tensor, cpu, t);
Y
Yu Yang 已提交
175
      }
Y
Stash  
Yu Yang 已提交
176
    }
Y
Yu Yang 已提交
177
    member_->nccl_ctxs_->WaitAll();
Y
Stash  
Yu Yang 已提交
178
  }
Y
Yu Yang 已提交
179 180 181 182
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
183

Y
Yu Yang 已提交
184 185
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
186
  platform::RecordBlock b(0);
Y
Yu Yang 已提交
187 188 189
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
190
}
Y
Yu Yang 已提交
191

Y
Yu Yang 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
211 212 213 214 215
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
216 217
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
218
      auto t =
Y
Yu Yang 已提交
219
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
220 221
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
222 223 224 225
    }
  }
}

226 227 228 229 230 231 232 233
ParallelExecutor::~ParallelExecutor() {
  if (member_->own_local_scope) {
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
234
}  // namespace framework
Y
Yang Yang 已提交
235
}  // namespace paddle