parallel_executor.cc 9.0 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
22
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
23
#endif
Y
Yang Yang 已提交
24

Y
Yu Yang 已提交
25
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
26
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
27

Y
Yang Yang 已提交
28
namespace paddle {
Y
Yu Yang 已提交
29 30
namespace framework {

Y
Yu Yang 已提交
31 32 33
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
34
      : places_(places) {}
Y
Yu Yang 已提交
35 36 37 38

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
39
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
42
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
43
#endif
44 45

  std::vector<std::tuple<std::string, proto::VarType::Type, bool>> var_types_;
46
  bool own_local_scope;
Y
Yu Yang 已提交
47 48
};

49 50 51 52
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
53
ParallelExecutor::ParallelExecutor(
54
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
55
    const std::unordered_set<std::string> &params,
56 57
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
58
    Scope *scope, const std::vector<Scope *> &local_scopes,
59
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
60
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
61
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
62
  member_->global_scope_ = scope;
Y
Yu Yang 已提交
63

64
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
65
  // Create local scopes
66
  if (local_scopes.empty()) {
67
    member_->own_local_scope = true;
Y
Yu Yang 已提交
68 69
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
70
      member_->local_scopes_.emplace_back(&scope->NewScope());
71 72
    }
  } else {
73
    member_->own_local_scope = false;
74 75
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
76
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
77
    }
Y
Yu Yang 已提交
78 79
  }

Y
Yu Yang 已提交
80 81
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
T
typhoonzero 已提交
82
  auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
T
typhoonzero 已提交
83 84 85 86 87 88
  ncclUniqueId *nccl_id = nullptr;
  if (nccl_id_var != nullptr) {
    nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
  }
  member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
      member_->places_, nccl_id, num_trainers, trainer_id));
Y
Yu Yang 已提交
89
#endif
90 91 92
  if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 &&
      local_scopes.empty()) {  // Is CUDA
    BCastParamsToGPUs(bcast_vars);
Y
Yu Yang 已提交
93
  }
Y
Yu Yang 已提交
94
// Startup Program has been run. All local scopes has correct parameters.
Y
Yu Yang 已提交
95

Y
Yu Yang 已提交
96 97 98
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
99
  builder_.reset(new details::MultiDevSSAGraphBuilder(
Y
Yu Yang 已提交
100
      member_->places_, loss_var_name, params, member_->local_scopes_,
101 102
      member_->nccl_ctxs_.get(), build_strategy));

Y
Yu Yang 已提交
103
#else
104
  builder_.reset(new details::MultiDevSSAGraphBuilder(
Y
Yancey1989 已提交
105
      member_->places_, loss_var_name, params, member_->local_scopes_,
106 107
      build_strategy));

Y
Yu Yang 已提交
108
#endif
109
  auto graph = builder_.get()->Build(main_program);
Y
Yu Yang 已提交
110

Y
Yu Yang 已提交
111
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
Y
yuyang18 已提交
112
      exec_strategy, member_->local_scopes_, places, std::move(graph)));
Y
Yu Yang 已提交
113

Y
Yu Yang 已提交
114
  // Step 3. Create vars in each scope;
115 116 117
  for (auto *var : main_program.Block(0).AllVars()) {
    member_->var_types_.emplace_back(var->Name(), var->GetType(),
                                     var->Persistable());
Y
Yu Yang 已提交
118
  }
Y
Yu Yang 已提交
119 120 121
}

void ParallelExecutor::BCastParamsToGPUs(
122
    const std::unordered_set<std::string> &vars) const {
Y
Yu Yang 已提交
123
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
124
  auto *main_scope = member_->local_scopes_[0];
Y
Yu Yang 已提交
125

126 127
  for (auto &var : vars) {
    auto *main_var = main_scope->FindVar(var);
J
JiayiFeng 已提交
128
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      platform::NCCLGroupGuard guard;
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
        if (i == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
144
          auto local_scope = member_->local_scopes_[i];
145
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
146
          t->Resize(dims);
147
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
148
        }
149
        auto &nccl_ctx = member_->nccl_ctxs_->at(place);
150 151 152 153 154 155 156 157 158 159

        if (builder_.get() != nullptr &&
            builder_->GetRemoteVarDevice(var) != -1) {
          int place_id = builder_->GetRemoteVarDevice(var);
          platform::dynload::ncclBcast(buffer, numel, data_type, place_id,
                                       nccl_ctx.comm_, nccl_ctx.stream());
        } else {
          platform::dynload::ncclBcast(buffer, numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
        }
160 161 162 163 164 165 166 167 168
      }
    } else {
      platform::CPUPlace cpu;
      for (size_t i = 1; i < member_->places_.size(); ++i) {
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
        t->Resize(dims);
        t->mutable_data(cpu, main_tensor.type());
        paddle::framework::TensorCopy(main_tensor, cpu, t);
Y
Yu Yang 已提交
169
      }
Y
Stash  
Yu Yang 已提交
170
    }
Y
Yu Yang 已提交
171
    member_->nccl_ctxs_->WaitAll();
Y
Stash  
Yu Yang 已提交
172
  }
Y
Yu Yang 已提交
173 174 175 176
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
177

Y
Yu Yang 已提交
178 179
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
180
  platform::RecordBlock b(0);
181
  // Create local scopes.
Y
Yu Yang 已提交
182 183 184
  for (auto it = member_->local_scopes_.rbegin();
       it != member_->local_scopes_.rend(); ++it) {
    auto &scope = *it;
185 186 187 188 189 190 191 192 193 194 195 196 197
    Scope &local_scope = scope->NewScope();
    *scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>() =
        &local_scope;

    for (auto &name_type_pair : member_->var_types_) {
      if (scope->FindVar(std::get<0>(name_type_pair)) != nullptr) {
        continue;
      }

      if (std::get<2>(name_type_pair)) {  // Persistable
        InitializeVariable(scope->Var(std::get<0>(name_type_pair)),
                           std::get<1>(name_type_pair));
      } else {
Y
update  
Yu Yang 已提交
198
        InitializeVariable(local_scope.Var(std::get<0>(name_type_pair)),
199 200 201 202 203
                           std::get<1>(name_type_pair));
      }
    }
  }

Y
Yu Yang 已提交
204 205 206
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
207 208 209 210 211 212 213 214 215 216

  // Wait All computational streams
  for (auto p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  for (auto &scope : member_->local_scopes_) {
    auto &local_scope =
        *scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>();
    scope->DeleteScope(local_scope);
  }
Y
Yu Yang 已提交
217
}
Y
Yu Yang 已提交
218

Y
Yu Yang 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
238 239 240 241 242
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
243 244
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
245
      auto t =
Y
Yu Yang 已提交
246
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
247 248
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
249 250 251 252
    }
  }
}

253 254 255 256 257 258 259 260
ParallelExecutor::~ParallelExecutor() {
  if (member_->own_local_scope) {
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
261
}  // namespace framework
Y
Yang Yang 已提交
262
}  // namespace paddle