operator.h 11.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

53 54
extern std::unordered_map<std::string, OpProto>& OpProtos();

Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
67 68 69
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
70
               const VarNameMap& outputs, const AttributeMap& attrs);
71

Q
Qiao Longfei 已提交
72 73 74 75 76 77 78 79 80
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

81
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
82 83 84

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
85
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
86 87

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
88
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
89 90
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
91 92
  virtual bool IsNetOp() const { return false; }

93 94
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
95 96 97
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
98
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
99
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
100
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
101
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
102

Y
Yu Yang 已提交
103
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
104
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
105 106
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
107
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
108

Y
Yu Yang 已提交
109
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
Y
Yan Chunwei 已提交
110

111
  std::string Type() const { return type_; }
Y
Yi Wang 已提交
112 113
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
114
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
115 116
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
117

Q
Qiao Longfei 已提交
118
 public:
Q
Qiao Longfei 已提交
119
  std::string type_;
D
dongzhihong 已提交
120
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
121
  // I (Inputs)opear
D
dongzhihong 已提交
122 123
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
124
  VarNameMap inputs_;
Y
Yu Yang 已提交
125

D
dongzhihong 已提交
126 127
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
128
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
129
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
130 131
};

Y
Yu Yang 已提交
132 133 134
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
// register it.
Y
Yu Yang 已提交
135 136 137 138
#define DEFINE_OP_CLONE_METHOD(CLS)                       \
  std::unique_ptr<OperatorBase> Clone() const final {     \
    return std::unique_ptr<OperatorBase>(new CLS(*this)); \
  }
Y
Yu Yang 已提交
139

Y
Yu Yang 已提交
140 141 142 143
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
144
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS)                                 \
Y
Yu Yang 已提交
145 146 147 148
  CLS(const std::string& type, const VarNameMap& inputs,                       \
      const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
      : PARENT_CLS(type, inputs, outputs, attrs) {}

149
class InferShapeContext {
Y
Yan Chunwei 已提交
150
 public:
151 152
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
153

Y
Yu Yang 已提交
154
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
155
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
156 157
  }

Y
Yu Yang 已提交
158
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
159
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
160 161
  }

162
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
163
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
164 165
  }

166
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
167
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
168 169
  }

170 171
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
172 173
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
174
    res.reserve(names.size());
Y
Yan Chunwei 已提交
175
    std::transform(
176
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
177
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
178 179 180
    return res;
  }

181
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
182 183
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
184
    res.reserve(names.size());
Y
Yan Chunwei 已提交
185
    std::transform(
186
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
187
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
188 189 190
    return res;
  }

191 192
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
193
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
194
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
195
    return &var->Get<T>();
196 197 198 199
  }

  template <typename T>
  T* Output(const std::string& name) const {
200
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
201
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
202
    return var->GetMutable<T>();
203 204 205 206 207 208 209 210
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
211
                   [&](const std::string& sub_name) {
212
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
213 214 215
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
216
                     return &var->Get<T>();
217 218 219 220 221 222 223 224 225 226
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
227
                   [&](const std::string& sub_name) {
228
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
229 230 231
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
232
                     return var->GetMutable<T>();
233 234 235 236 237
                   });
    return res;
  }

  const OperatorBase& op_;
238
  const Scope& scope_;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

256
class ExecutionContext : public InferShapeContext {
257
 public:
258
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
259
                   const platform::DeviceContext* device_context)
260
      : InferShapeContext(op, scope), device_context_(device_context) {}
261

Q
qijun 已提交
262 263 264
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
265
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
266

D
dongzhihong 已提交
267
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
268

Q
qijun 已提交
269
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
270
    return device_context_;
Q
qijun 已提交
271
  }
Q
qijun 已提交
272

D
dongzhihong 已提交
273
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
274 275
};

Q
qijun 已提交
276 277
class OpKernel {
 public:
Q
qijun 已提交
278
  /**
279
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
280 281
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
282
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
283 284
   */

285
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
286 287 288 289

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
290 291
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
292 293
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
294

Y
Yu Yang 已提交
295
    OpKernelKey() = default;
L
liaogang 已提交
296
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
297 298 299
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
300 301 302
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
303 304 305 306 307 308 309 310 311 312 313
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
314

Y
Yu Yang 已提交
315 316 317 318
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

319
  void InferShape(const Scope& scope) const override {
320
    InferShape(InferShapeContext(*this, scope));
321 322
  }

Y
Yu Yang 已提交
323
  void Run(const Scope& scope,
Y
Yu Yang 已提交
324
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
325
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
326
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
327 328
  }

Y
Yu Yang 已提交
329 330 331 332
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
333
  }
Y
Yan Chunwei 已提交
334

335 336 337 338 339 340
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
341
 protected:
342
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
343 344 345 346
};

}  // namespace framework
}  // namespace paddle