operator.h 11.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

53 54
extern std::unordered_map<std::string, OpProto>& OpProtos();

Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
67 68 69
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
70
               const VarNameMap& outputs, const AttributeMap& attrs);
71

Q
Qiao Longfei 已提交
72 73 74 75 76 77 78 79 80
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

81
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
82 83 84

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
85
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
86 87

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
88
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
89 90
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
91 92
  virtual bool IsNetOp() const { return false; }

93 94
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
95 96 97
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
98
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
99
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
100
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
101
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
102

Y
Yu Yang 已提交
103
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
104
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
105 106
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
107
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
108

Y
Yu Yang 已提交
109
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
Y
Yan Chunwei 已提交
110

111
  std::string Type() const { return type_; }
Y
Yi Wang 已提交
112 113
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
114 115
  // Return a new operator instance, which is as same as this.
  // NOTE: It is caller's responsibility to delete that operator instance.
Y
Yu Yang 已提交
116 117
  virtual OperatorBase* Clone() const = 0;

Q
Qiao Longfei 已提交
118
 public:
Q
Qiao Longfei 已提交
119
  std::string type_;
D
dongzhihong 已提交
120
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
121
  // I (Inputs)opear
D
dongzhihong 已提交
122 123
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
124
  VarNameMap inputs_;
Y
Yu Yang 已提交
125

D
dongzhihong 已提交
126 127
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
128
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
129
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
130 131
};

Y
Yu Yang 已提交
132 133 134
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
// register it.
Y
Yu Yang 已提交
135 136 137
#define DEFINE_OP_CLONE_METHOD(CLS) \
  OperatorBase* Clone() const final { return new CLS(*this); }

Y
Yu Yang 已提交
138 139 140 141
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
142
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS)                                 \
Y
Yu Yang 已提交
143 144 145 146
  CLS(const std::string& type, const VarNameMap& inputs,                       \
      const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
      : PARENT_CLS(type, inputs, outputs, attrs) {}

147
class InferShapeContext {
Y
Yan Chunwei 已提交
148
 public:
149 150
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
151

Y
Yu Yang 已提交
152
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
153
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
154 155
  }

Y
Yu Yang 已提交
156
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
157
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
158 159
  }

160
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
161
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
162 163
  }

164
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
165
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
166 167
  }

168 169
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
170 171
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
172
    res.reserve(names.size());
Y
Yan Chunwei 已提交
173
    std::transform(
174
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
175
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
176 177 178
    return res;
  }

179
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
180 181
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
182
    res.reserve(names.size());
Y
Yan Chunwei 已提交
183
    std::transform(
184
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
185
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
186 187 188
    return res;
  }

189 190
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
191
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
192
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
193
    return &var->Get<T>();
194 195 196 197
  }

  template <typename T>
  T* Output(const std::string& name) const {
198
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
199
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
200
    return var->GetMutable<T>();
201 202 203 204 205 206 207 208
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
209
                   [&](const std::string& sub_name) {
210
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
211 212 213
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
214
                     return &var->Get<T>();
215 216 217 218 219 220 221 222 223 224
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
225
                   [&](const std::string& sub_name) {
226
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
227 228 229
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
230
                     return var->GetMutable<T>();
231 232 233 234 235
                   });
    return res;
  }

  const OperatorBase& op_;
236
  const Scope& scope_;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

254
class ExecutionContext : public InferShapeContext {
255
 public:
256
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
257
                   const platform::DeviceContext* device_context)
258
      : InferShapeContext(op, scope), device_context_(device_context) {}
259

Q
qijun 已提交
260 261 262
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
263
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
264

D
dongzhihong 已提交
265
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
266

Q
qijun 已提交
267
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
268
    return device_context_;
Q
qijun 已提交
269
  }
Q
qijun 已提交
270

D
dongzhihong 已提交
271
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
272 273
};

Q
qijun 已提交
274 275
class OpKernel {
 public:
Q
qijun 已提交
276
  /**
277
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
278 279
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
280
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
281 282
   */

283
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
284 285 286 287

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
288 289
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
290 291
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
292

Y
Yu Yang 已提交
293
    OpKernelKey() = default;
L
liaogang 已提交
294
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
295 296 297
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
298 299 300
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
301 302 303 304 305 306 307 308 309 310 311
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
312

Y
Yu Yang 已提交
313 314 315 316
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

317
  void InferShape(const Scope& scope) const override {
318
    InferShape(InferShapeContext(*this, scope));
319 320
  }

Y
Yu Yang 已提交
321
  void Run(const Scope& scope,
Y
Yu Yang 已提交
322
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
323
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
324
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
325 326
  }

Y
Yu Yang 已提交
327 328 329 330
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
331
  }
Y
Yan Chunwei 已提交
332

333 334 335 336 337 338
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
339
 protected:
340
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
341 342 343 344
};

}  // namespace framework
}  // namespace paddle