analysis_config.cc 30.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18 19
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
20
#include "paddle/fluid/inference/utils/table_printer.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
23 24
#include "paddle/fluid/platform/enforce.h"

25 26 27 28
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30 31 32
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

33
namespace paddle {
W
wanghuancoder 已提交
34 35
struct MkldnnQuantizerConfig;

36
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
37
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
38
extern const std::vector<std::string> kLiteSubgraphPasses;
39

40
PassStrategy *AnalysisConfig::pass_builder() const {
41 42 43 44
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
45 46
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
47 48
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
49 50 51
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
52 53 54 55 56 57 58 59 60 61 62 63
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

64 65 66
  return pass_builder_.get();
}

67
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
68
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
69 70

  Update();
71
}
72 73
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
74 75
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
76 77

  Update();
78
}
79 80
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
81 82
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
83 84

  Update();
85
}
86 87
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
88
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
89 90
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
91
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
92
  gpu_device_id_ = device_id;
93
#else
Y
Yan Chunwei 已提交
94
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
95 96
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
97 98 99

  Update();
}
100
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
101 102 103
  use_gpu_ = false;

  Update();
104 105
}

106 107 108 109 110 111
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
112 113 114 115
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
116 117
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
118 119 120 121 122
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
123 124 125
  Update();
}

126 127 128 129 130 131 132 133
void AnalysisConfig::SetXpuDeviceId(int device_id) {
  PADDLE_ENFORCE_EQ(use_xpu_, true,
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
134 135 136 137 138 139 140 141 142 143 144
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
J
jianghaicheng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158
void AnalysisConfig::EnableIpu(int device_num, bool ipu_enable_pipelining,
                               int ipu_batches_per_step, int ipu_batch_size,
                               bool ipu_need_avg_shard) {
  enable_ir_optim_ = true;

  use_ipu_ = true;
  ipu_device_num_ = device_num;
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
  ipu_batch_size_ = ipu_batch_size;
  ipu_need_avg_shard_ = ipu_need_avg_shard;

  Update();
}
W
Wilber 已提交
159

160
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
161 162 163 164 165 166
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
167

168
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
169 170
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
171

172
  CP_MEMBER(use_fc_padding_);
173
  // GPU related.
174
  CP_MEMBER(use_gpu_);
175
  CP_MEMBER(use_cudnn_);
176
  CP_MEMBER(gpu_device_id_);
177
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
178 179

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
180
  // TensorRT related.
181 182 183 184
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
185
  CP_MEMBER(tensorrt_precision_mode_);
186
  CP_MEMBER(trt_disabled_ops_);
187 188
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
189
  CP_MEMBER(trt_use_static_engine_);
190
  CP_MEMBER(trt_use_calib_mode_);
191
  CP_MEMBER(trt_use_oss_);
192 193 194 195
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
D
denglin-github 已提交
196 197 198
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
199
  // MKLDNN related.
200 201
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
202
  CP_MEMBER(mkldnn_cache_capacity_);
203 204 205
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
206 207 208
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
209 210 211
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
212
  CP_MEMBER(disable_trt_plugin_fp16_);
213

石晓伟 已提交
214 215 216 217
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
218 219
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
220
  // XPU related.
221
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
222
  CP_MEMBER(xpu_device_id_);
223
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
224 225 226 227 228
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
229

W
Wilber 已提交
230 231 232
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
233
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
234

235 236 237
  // profile related.
  CP_MEMBER(with_profile_);

238 239 240
  // glog related.
  CP_MEMBER(with_glog_info_);

241 242 243 244 245 246 247 248 249 250
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

251 252
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
253 254 255 256 257 258 259 260
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
  CP_MEMBER(ipu_batch_size_);
  CP_MEMBER(ipu_need_avg_shard_);

261
  if (use_gpu_) {
262 263 264
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
265 266
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
267 268 269
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
270 271 272
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
273 274 275
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
276 277 278 279 280
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

281
#undef CP_MEMBER
Y
Yan Chunwei 已提交
282

W
Wilber 已提交
283 284 285 286 287
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
288
    pass_builder_->ClearPasses();
W
Wilber 已提交
289
    auto other_passes = other.pass_builder()->AllPasses();
290 291
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
292
    }
293
  }
D
denglin-github 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
309 310
}

311
void AnalysisConfig::EnableCUDNN() {
312
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
313 314 315 316 317 318 319 320 321
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

322
void AnalysisConfig::EnableMKLDNN() {
323 324 325 326 327 328
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
329 330

  Update();
331 332
}

333 334 335 336 337 338 339 340 341
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

342 343 344 345 346 347 348 349 350 351 352 353 354
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

355 356
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
357 358
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
359 360 361 362
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
363 364 365 366
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
367 368 369 370 371 372 373 374
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

375
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
376
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
377 378
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
379
  return mkldnn_quantizer_config_.get();
380 381
}

382
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
383
    int workspace_size, int max_batch_size, int min_subgraph_size,
384
    AnalysisConfig::Precision precision_mode, bool use_static,
385
    bool use_calib_mode) {
386
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
387 388 389 390 391
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

392 393 394
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
395
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
396
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
397
  trt_use_static_engine_ = use_static;
398
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
399

400
  Update();
Y
Yan Chunwei 已提交
401 402 403 404
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
405 406
}

D
denglin-github 已提交
407 408 409 410 411 412
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

413 414 415 416 417 418 419 420 421 422 423
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

424 425 426 427 428
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

429 430 431 432 433
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

434
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
435

Y
Yan Chunwei 已提交
436
// TODO(Superjomn) refactor this, buggy.
437
void AnalysisConfig::Update() {
438 439 440
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
441
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
442 443
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
444 445
      ((use_npu() ^ pass_builder_->use_npu())) ||
      ((use_ipu() ^ pass_builder_->use_ipu()))) {
Y
Yan Chunwei 已提交
446 447 448 449 450 451 452
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
453 454 455
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
456 457 458 459 460 461
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
462 463 464 465 466 467
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
Y
Yan Chunwei 已提交
468 469 470
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
471

472
  } else {
Y
Yan Chunwei 已提交
473 474 475
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
476 477 478 479
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
480 481 482 483 484 485 486
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
487 488 489 490 491 492 493
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
494 495 496 497
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
498 499 500
  }

  if (use_tensorrt_) {
501 502
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
503
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
504
          (pass == "conv_bn_fuse_pass")) {
505 506
        continue;
      }
507
      pass_builder()->AppendPass(pass);
508 509
    }
  }
510

D
denglin-github 已提交
511 512 513 514 515 516 517
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

518
  if (use_gpu() && use_cudnn_) {
519
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
520 521 522 523 524 525 526 527
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

528
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
529
#ifdef PADDLE_WITH_MKLDNN
530 531 532
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
533 534
    } else {
      pass_builder()->EnableMKLDNN();
535 536 537 538
    }
#endif
  }

539 540 541 542 543
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
544 545
    }
#ifdef PADDLE_WITH_MKLDNN
546
    pass_builder()->EnableMkldnnQuantizer();
547 548 549
#endif
  }

550 551 552 553 554 555
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

556
#ifdef PADDLE_WITH_MKLDNN
557 558
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
559
#else
Y
Yan Chunwei 已提交
560
  if (enable_memory_optim_) {
561 562
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
563 564
  }

石晓伟 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

579
  if (use_xpu_) {
580
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
581 582 583 584
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
585 586 587 588 589
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
590 591
  }

W
Wilber 已提交
592
  if (use_npu_) {
593
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
594 595 596 597 598 599 600 601 602 603
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
604 605 606 607 608 609 610
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
W
Wilber 已提交
611

612 613 614 615 616
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

617
std::string AnalysisConfig::SerializeInfoCache() {
618
  std::stringstream ss;
Y
Yan Chunwei 已提交
619 620 621 622
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

623
  ss << use_gpu_;
624
  ss << use_fc_padding_;
625 626
  ss << gpu_device_id_;
  ss << xpu_device_id_;
627 628 629 630 631
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
632 633
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
634 635 636
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

637 638 639
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

640 641 642
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
643
  ss << enable_memory_optim_;
644 645

  ss << use_mkldnn_;
646
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
647 648 649
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

650
  ss << use_mkldnn_quantizer_;
651
  ss << use_mkldnn_bfloat16_;
652 653
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
654 655
  ss << model_from_memory_;

656 657
  ss << with_profile_;

658 659
  ss << with_glog_info_;

660 661 662 663
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
664 665
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
666 667

  ss << use_lite_;
668 669
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
670 671 672 673 674
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
675

W
Wilber 已提交
676 677 678
  ss << use_npu_;
  ss << npu_device_id_;

679 680
  ss << thread_local_stream_;

J
jianghaicheng 已提交
681 682 683 684 685 686 687
  ss << use_ipu_;
  ss << ipu_device_num_;
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
  ss << ipu_batch_size_;
  ss << ipu_need_avg_shard_;

688 689 690
  return ss.str();
}

691
void AnalysisConfig::SetCpuMathLibraryNumThreads(
692 693
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
694 695

  Update();
696 697
}

698
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
699
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
700 701
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
702
  size_t gpu_total, gpu_available;
703
  platform::SetDeviceId(gpu_device_id_);
704 705
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
706 707
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
708 709 710 711
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
712 713 714 715
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
716 717
}

718 719
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
720 721 722
  Update();
}

723
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
724 725 726
  return enable_memory_optim_;
}

727 728 729 730
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
731 732
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
733
  model_from_memory_ = true;
T
Tao Luo 已提交
734 735
}

736
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
737 738 739 740 741
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
742
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
743 744 745 746 747
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
748 749 750 751
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
752 753 754 755 756 757

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

758 759 760 761 762
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
763
void AnalysisConfig::EnableLiteEngine(
764
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
765 766 767 768 769 770
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
771
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
772 773 774
  Update();
}

775 776 777 778 779 780 781
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

782 783
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
803
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
862 863 864
      os.InsertRow({"tensorrt_tuned_dynamic_shape", trt_tuned_dynamic_shape_
                                                        ? shape_range_info_path_
                                                        : "false"});
865 866 867 868 869 870

      os.InsertRow({"tensorrt_use_oss", trt_use_oss_ ? "true" : "false"});
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
871
#endif
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
895 896
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
897 898 899 900

  return os.PrintTable();
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
  PADDLE_ENFORCE_EQ(model_cache_token.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
                    false, platform::errors::InvalidArgument(
                               "model_cache_token has already been set."));

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(), false,
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
992
}  // namespace paddle