analysis_config.cc 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
17
#include "paddle/fluid/platform/cpu_info.h"
18
#include "paddle/fluid/platform/enforce.h"
19
#include "paddle/fluid/platform/gpu_info.h"
20

21
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
22 23 24
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

25
namespace paddle {
W
wanghuancoder 已提交
26 27
struct MkldnnQuantizerConfig;

28
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
29
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
30
extern const std::vector<std::string> kLiteSubgraphPasses;
31

32
PassStrategy *AnalysisConfig::pass_builder() const {
33 34 35 36
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
37 38
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
39 40
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
41 42 43 44 45 46 47 48 49 50 51 52
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

53 54 55
  return pass_builder_.get();
}

56
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
57
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
58 59

  Update();
60
}
61 62
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
63 64
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
65 66

  Update();
67
}
68 69
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
70 71
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
72 73

  Update();
74
}
75 76
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
77
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
78 79
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
80
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
81
  gpu_device_id_ = device_id;
82
#else
Y
Yan Chunwei 已提交
83
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
84 85
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
86 87 88

  Update();
}
89
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
90 91 92
  use_gpu_ = false;

  Update();
93 94
}

95 96 97 98 99 100
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
101 102 103 104
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
105 106
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
107 108 109 110 111
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
112 113 114
  Update();
}

W
Wilber 已提交
115 116 117 118 119 120 121 122 123 124 125 126
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}

127
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
128 129 130 131 132 133
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
134

135
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
136 137
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
138

139
  CP_MEMBER(use_fc_padding_);
140
  // GPU related.
141
  CP_MEMBER(use_gpu_);
142
  CP_MEMBER(use_cudnn_);
143
  CP_MEMBER(gpu_device_id_);
144
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
145 146

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
147
  // TensorRT related.
148 149 150 151
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
152
  CP_MEMBER(tensorrt_precision_mode_);
153
  CP_MEMBER(trt_disabled_ops_);
154 155
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
156
  CP_MEMBER(trt_use_static_engine_);
157
  CP_MEMBER(trt_use_calib_mode_);
158
  CP_MEMBER(trt_use_oss_);
D
denglin-github 已提交
159 160 161
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
162
  // MKLDNN related.
163 164
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
165
  CP_MEMBER(mkldnn_cache_capacity_);
166 167 168
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
169 170 171
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
172 173 174
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
175
  CP_MEMBER(disable_trt_plugin_fp16_);
176

石晓伟 已提交
177 178 179 180
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
181 182
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
183
  // XPU related.
184
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
185
  CP_MEMBER(xpu_device_id_);
186
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
187 188 189 190 191
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
192

W
Wilber 已提交
193 194 195 196
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);

197 198 199
  // profile related.
  CP_MEMBER(with_profile_);

200 201 202
  // glog related.
  CP_MEMBER(with_glog_info_);

203 204 205 206 207 208 209 210 211 212
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

213 214
  CP_MEMBER(thread_local_stream_);

215
  if (use_gpu_) {
216 217 218
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
219 220
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
221 222 223
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
224 225 226
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
227 228 229 230 231
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

232
#undef CP_MEMBER
Y
Yan Chunwei 已提交
233

W
Wilber 已提交
234 235 236 237 238 239 240
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
    auto all_passes = kTRTSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
W
Wilber 已提交
241 242 243 244
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
W
Wilber 已提交
245 246 247 248 249 250 251
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
252
  }
D
denglin-github 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
268 269
}

270
void AnalysisConfig::EnableCUDNN() {
271
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
272 273 274 275 276 277 278 279 280
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

281
void AnalysisConfig::EnableMKLDNN() {
282 283 284 285 286 287
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
288 289

  Update();
290 291
}

292 293 294 295 296 297 298 299 300
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

301 302 303 304 305 306 307 308 309 310 311 312 313
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

314 315
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
316 317
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
318 319 320 321
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
322 323 324 325
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
326 327 328 329 330 331 332 333
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

334
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
335
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
336 337
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
338
  return mkldnn_quantizer_config_.get();
339 340
}

341
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
342
    int workspace_size, int max_batch_size, int min_subgraph_size,
343
    AnalysisConfig::Precision precision_mode, bool use_static,
344
    bool use_calib_mode) {
345
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
346 347 348 349 350
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

351 352 353
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
354
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
355
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
356
  trt_use_static_engine_ = use_static;
357
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
358

359
  Update();
Y
Yan Chunwei 已提交
360 361 362 363
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
364 365
}

D
denglin-github 已提交
366 367 368 369 370 371
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

372 373 374 375 376 377 378 379 380 381 382
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

383 384 385 386 387
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

388 389 390 391 392
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

393
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
394

Y
Yan Chunwei 已提交
395
// TODO(Superjomn) refactor this, buggy.
396
void AnalysisConfig::Update() {
397 398 399
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
400
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
401 402 403
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
      ((use_npu() ^ pass_builder_->use_npu()))) {
Y
Yan Chunwei 已提交
404 405 406 407 408 409 410
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
411 412 413 414 415 416
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
417 418 419 420 421 422
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
Y
Yan Chunwei 已提交
423 424 425
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
426

427
  } else {
Y
Yan Chunwei 已提交
428 429 430
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
431 432 433 434 435 436 437
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
438 439 440 441 442 443 444
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
445 446 447 448
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
449 450 451
  }

  if (use_tensorrt_) {
452 453
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
454
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
455
          (pass == "conv_bn_fuse_pass")) {
456 457
        continue;
      }
458
      pass_builder()->AppendPass(pass);
459 460
    }
  }
D
denglin-github 已提交
461 462 463 464 465 466 467
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

468
  if (use_gpu() && use_cudnn_) {
469
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
470 471 472 473 474 475 476 477
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

478
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
479
#ifdef PADDLE_WITH_MKLDNN
480 481 482
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
483 484
    } else {
      pass_builder()->EnableMKLDNN();
485 486 487 488
    }
#endif
  }

489 490 491 492 493
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
494 495
    }
#ifdef PADDLE_WITH_MKLDNN
496
    pass_builder()->EnableMkldnnQuantizer();
497 498 499
#endif
  }

500 501 502 503 504 505
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

506
#ifdef PADDLE_WITH_MKLDNN
507 508
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
509
#else
Y
Yan Chunwei 已提交
510
  if (enable_memory_optim_) {
511 512
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
513 514
  }

石晓伟 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

529
  if (use_xpu_) {
530
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
531 532 533 534
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
535 536 537 538 539
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
540 541
  }

W
Wilber 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554
  if (use_npu_) {
#ifdef PADDLE_WITH_ASCEND_CL
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }

555 556 557 558 559
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

560
std::string AnalysisConfig::SerializeInfoCache() {
561
  std::stringstream ss;
Y
Yan Chunwei 已提交
562 563 564 565
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

566
  ss << use_gpu_;
567
  ss << use_fc_padding_;
568 569
  ss << gpu_device_id_;
  ss << xpu_device_id_;
570 571 572 573 574
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
575 576
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
577 578 579
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

580 581 582
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

583 584 585
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
586
  ss << enable_memory_optim_;
587 588

  ss << use_mkldnn_;
589
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
590 591 592
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

593
  ss << use_mkldnn_quantizer_;
594
  ss << use_mkldnn_bfloat16_;
595 596
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
597 598
  ss << model_from_memory_;

599 600
  ss << with_profile_;

601 602
  ss << with_glog_info_;

603 604 605 606
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
607 608
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
609 610

  ss << use_lite_;
611 612
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
613 614 615 616 617
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
618

W
Wilber 已提交
619 620 621
  ss << use_npu_;
  ss << npu_device_id_;

622 623
  ss << thread_local_stream_;

624 625 626
  return ss.str();
}

627
void AnalysisConfig::SetCpuMathLibraryNumThreads(
628 629
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
630 631

  Update();
632 633
}

634
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
635
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
636 637
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
638
  size_t gpu_total, gpu_available;
639
  platform::SetDeviceId(gpu_device_id_);
640 641
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
642 643
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
644 645 646 647
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
648 649 650 651
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
652 653
}

654
void AnalysisConfig::EnableMemoryOptim() {
Y
Yan Chunwei 已提交
655 656 657 658
  enable_memory_optim_ = true;
  Update();
}

659
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
660 661 662
  return enable_memory_optim_;
}

663 664 665 666
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
667 668
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
669
  model_from_memory_ = true;
Y
Yan Chunwei 已提交
670 671

  Update();
T
Tao Luo 已提交
672 673
}

674
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
675 676 677 678 679
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
680
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
681 682 683 684 685
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
686 687 688 689
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
690 691 692 693 694 695

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

696 697 698 699 700
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
701
void AnalysisConfig::EnableLiteEngine(
702
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
703 704 705 706 707 708
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
709
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
710 711 712
  Update();
}

713 714 715 716 717 718 719
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

720 721
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

722
}  // namespace paddle