collective.py 68.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
17
from datetime import timedelta
18
from ..fluid.layer_helper import LayerHelper
19
from ..fluid.framework import Variable
20
from ..fluid.framework import in_dygraph_mode
21
from ..fluid.framework import OpProtoHolder
J
Jiabin Yang 已提交
22
from ..fluid.framework import _non_static_mode
23
from ..fluid.framework import _in_legacy_dygraph
24
from ..fluid.framework import convert_np_dtype_to_dtype_
J
Jiangxinz 已提交
25
from ..fluid.framework import _varbase_creator
26 27 28 29
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
30 31
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
B
Baibaifan 已提交
32
from ..fluid.dygraph import layers
33 34 35 36
from ..fluid.dygraph.parallel import prepare_context
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
W
wanghuancoder 已提交
37
from paddle import _C_ops
J
Jiangxinz 已提交
38
import paddle.fluid.dygraph_utils as dygraph_utils
39

40
__all__ = []
41 42 43


class ReduceOp:
L
lilong12 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
75 76 77 78
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3
79
    AVG = 4
80 81


K
kuizhiqing 已提交
82 83 84 85
class Group():
    """
    The abstract representation of group.
    """
86

87
    def __init__(self, rank, rank_num, id=0, ranks=[], pg=None, name=None):
88 89
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
90 91
        self.id = id
        self.ranks = ranks
92 93
        self.pg = pg
        self.name = name
K
kuizhiqing 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1

108 109 110 111
    @property
    def process_group(self):
        return self.pg

112 113 114 115
    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
            self.rank, self.nranks, self.id)
        debug_str += ", ".join(map(str, self.ranks))
116 117
        debug_str += "; name: "
        debug_str += self.name if self.name else "None"
118 119
        return debug_str

K
kuizhiqing 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}

135 136 137 138 139 140 141
# group map by name : the map of all groups from their names
# Dict[name, Group]
_group_map_by_name = {}

# Name of the default group for init_parallel_env
_default_group_name = "_default_pg"

142
_valid_backend_list = ['nccl', 'gloo', 'hccl', 'heter']
143 144 145
_default_store = None  # the default tcp store
_default_backend = None

K
kuizhiqing 已提交
146

L
lilong12 已提交
147 148 149 150 151 152 153 154 155 156
def _set_default_backend(backend):
    global _default_backend
    _default_backend = backend


def _set_default_store(store):
    global _default_store
    _default_store = store


K
kuizhiqing 已提交
157 158 159 160
def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
161 162
        _group_map[0] = Group(
            genv.rank, genv.world_size, ranks=list(range(genv.world_size)))
K
kuizhiqing 已提交
163 164 165 166 167 168 169
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


170 171 172 173 174 175
def _get_group_map_by_name():
    global _group_map_by_name
    return _group_map_by_name


def _get_default_group():
L
lilong12 已提交
176
    global _group_map_by_name
177 178 179 180 181 182
    assert _default_group_name in _group_map_by_name, (
        "Call paddle.distributed.init_parallel_env first "
        "to initialize the distributed environment.")
    return _get_group_map_by_name()[_default_group_name]


L
lilong12 已提交
183 184 185 186 187 188 189 190 191 192 193 194
def _set_group_map(gid, group):
    global _group_map
    assert gid not in _group_map
    _group_map[gid] = group


def _set_group_map_by_name(name, group):
    global _group_map_by_name
    assert name not in _group_map_by_name
    _group_map_by_name[name] = group


K
kuizhiqing 已提交
195 196 197 198 199 200 201 202 203 204
def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
205
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
J
Jiangxinz 已提交
220
    return gm[id] if id in gm else None
K
kuizhiqing 已提交
221 222


223 224 225 226 227 228
def _new_process_group_impl(backend,
                            store,
                            rank,
                            world_size,
                            group_name,
                            pg_options,
L
lilong12 已提交
229 230 231
                            group_id=0,
                            src_rank=None,
                            dst_rank=None):
232
    pg = None
233
    genv = _get_global_env()
L
lilong12 已提交
234 235 236 237
    if backend != 'heter':
        assert src_rank is None and dst_rank is None, (
            "src_rank and dst_rank "
            "can only be set for heter backend.")
L
lilong12 已提交
238
    assert backend in _valid_backend_list, "Unsupported backend: %s." % backend
239
    if backend == "gloo":
240 241
        place = core.CPUPlace()
        pg = core.ProcessGroupGloo(store, rank, world_size, place, group_id)
242
    elif backend == "nccl":
243 244
        place = core.CUDAPlace(genv.device_id)
        pg = core.ProcessGroupNCCL(store, rank, world_size, place, group_id)
245
    elif backend == "hccl":
246 247
        place = core.NPUPlace(genv.device_id)
        pg = core.ProcessGroupHCCL(store, rank, world_size, place, group_id)
248
    elif backend == "heter":
249 250 251 252 253
        place = None
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(genv.device_id)
        elif core.is_compiled_with_npu():
            place = core.NPUPlace(genv.device_id)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        cluster_id = int(os.getenv("CLUSTER_ID", "-1"))
        assert cluster_id >= 0, "please set the CLUSTER_ID variable."
        cluster_size = os.getenv("CLUSTER_SIZE", None)
        assert cluster_size, "please set the CLUSTER_SIZE variable."
        cluster_size = cluster_size.split(",")
        cluster_size = [int(s) for s in cluster_size]
        switch_ep = os.getenv("CLUSTER_SWITCH", None)
        assert switch_ep, "please set the CLUSTER_SWITCH variable."
        cluster_size_cumsum = np.cumsum(cluster_size)
        cluster_offset = 0 if cluster_id == 0 else cluster_size_cumsum[
            cluster_id - 1]
        global_rank = cluster_offset + rank
        global_world_size = cluster_size_cumsum[-1]
        pg = core.ProcessGroupHeter(
            store,
            rank=global_rank,
            world_size=global_world_size,
271
            place=place,
272
            gid=group_id,
273 274 275 276 277
            local_rank=rank,
            local_size=world_size,
            gloo_rank=cluster_id,
            gloo_size=len(cluster_size),
            with_switch=True,
L
lilong12 已提交
278 279 280
            switch_endpoint=switch_ep,
            src_rank=src_rank,
            dst_rank=dst_rank)
281 282 283 284

    return pg


S
ShenLiang 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
309
    if in_dygraph_mode():
310 311 312 313 314
        group = _get_default_group() if group is None else group
        task = group.process_group.barrier()
        task.wait()
        return

S
ShenLiang 已提交
315 316 317
    ring_id = 0 if group is None else group.id

    temp = fill_constant([1], dtype="int32", value="1")
J
Jiabin Yang 已提交
318
    if _non_static_mode():
W
wanghuancoder 已提交
319
        return _C_ops.barrier(temp, temp, 'ring_id', ring_id)
W
wanghuancoder 已提交
320 321 322

    op_type = 'barrier'

S
ShenLiang 已提交
323 324 325 326 327 328 329 330 331 332
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


L
lilong12 已提交
333 334 335 336 337 338 339 340 341 342
# _custom_gid provides a way for users to
# set the group id, which is usually useful
# to be compatible with the static mode.
_custom_gid = None


def _set_custom_gid(gid):
    _custom_gid = gid


K
kuizhiqing 已提交
343 344 345
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
346
    Creates a new distributed communication group.
K
kuizhiqing 已提交
347 348

    Args:
K
kuizhiqing 已提交
349
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
350 351 352
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
353
        Group: The group instance.
K
kuizhiqing 已提交
354 355 356 357 358 359 360

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
361 362 363
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
364 365

    """
366
    global _group_map
L
lilong12 已提交
367
    if in_dygraph_mode():
368
        global _default_group_name
L
lilong12 已提交
369
        gid = _custom_gid if _custom_gid else _new_ring_id()
370
        group_name = _default_group_name + str(gid)
L
lilong12 已提交
371
        if backend != 'heter' and (ranks is None or len(ranks) > 1):
372 373 374 375 376 377 378 379 380
            global_group = _get_default_group()
            global_rank = global_group.rank
            global_ranks = global_group.ranks
            backend = _default_backend if backend is None else backend
            if ranks is None:
                ranks = global_ranks
            assert len(ranks) <= len(global_ranks), (
                "Size of new group must be less than or "
                "equal to that of the default global group.")
381 382
        size = len(ranks)
        ranks = sorted(ranks)
L
lilong12 已提交
383 384 385 386
        if backend == 'heter' or (size > 1 and global_rank in ranks):
            rank = 0 if backend == 'heter' else ranks.index(global_rank)
            src_rank = ranks[0] if backend == 'heter' else None
            dst_rank = ranks[1] if backend == 'heter' else None
387 388 389 390 391 392 393
            pg = _new_process_group_impl(
                backend,
                _default_store,
                rank,
                size,
                group_name,
                pg_options=None,
L
lilong12 已提交
394 395 396
                group_id=gid,
                src_rank=src_rank,
                dst_rank=dst_rank)
397 398 399 400 401 402 403 404
        else:
            rank = -1
            pg = None
        group = Group(rank, size, id=gid, ranks=ranks, pg=pg, name=group_name)
        _group_map_by_name[group_name] = group
        _group_map[gid] = group

        return group
K
kuizhiqing 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
    else:
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        ranks = sorted(ranks)
        group_rank = ranks.index(global_rank)
        group_size = len(ranks)
        gp = Group(group_rank, group_size, ring_id, ranks)
        _group_map[ring_id] = gp

        if group_size >= 2:
            strategy = core.ParallelStrategy()
            strategy.nranks = group_size
            strategy.local_rank = group_rank
            strategy.trainer_endpoints = [
                genv.trainer_endpoints[i] for i in ranks
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
439 440 441 442
            elif core.is_compiled_with_npu():
                place = core.NPUPlace(genv.device_id)
                core.HCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
443 444 445 446
            elif core.is_compiled_with_mlu():
                place = core.MLUPlace(genv.device_id)
                core.CNCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
447 448 449 450 451 452 453
            else:
                assert False, ("no cuda device found")
        else:
            return gp

    # TODO(shenliang03): This is a temporary solution to solve the problem of 
    # hang caused by cross-creation of new_group
454
    tmp = paddle.to_tensor(
J
Jiabin Yang 已提交
455
        [1], dtype="int32") if _non_static_mode() else fill_constant(
456
            [0], dtype="int32", value="1")
457 458
    paddle.distributed.all_reduce(tmp, use_calc_stream=True)
    paddle.distributed.wait(tmp)
K
kuizhiqing 已提交
459 460
    return gp

461

K
kuizhiqing 已提交
462 463 464 465 466 467 468 469
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
470 471
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
472 473 474 475 476 477 478 479 480 481

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
482
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

J
Jiabin Yang 已提交
501
    if _non_static_mode():
W
wanghuancoder 已提交
502
        return _C_ops.c_sync_calc_stream(tensor, tensor)
K
kuizhiqing 已提交
503 504 505 506 507 508 509 510

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
511

512

K
kuizhiqing 已提交
513
def _sync_comm_stream(tensor, ring_id=0):
514

J
Jiabin Yang 已提交
515
    if _non_static_mode():
W
wanghuancoder 已提交
516
        return _C_ops.c_sync_comm_stream([tensor], [tensor], 'ring_id', ring_id)
517

K
kuizhiqing 已提交
518
    op_type = 'c_sync_comm_stream'
519

K
kuizhiqing 已提交
520 521 522 523 524 525 526 527 528
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
529 530 531
    """

    Broadcast a tensor from the source to all others.
532 533 534 535 536 537 538
    As shown below, 4 GPUs each start 4 processes and GPU0 owns data 0. Through broadcast operator,
    the data 0 will be sent to all GPUs from GPU0.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png
        :width: 800
        :alt: broadcast
        :align: center
539 540 541 542 543

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
544
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
545 546
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
547 548 549 550 551 552 553

    Returns:
        None.

    Examples:
        .. code-block:: python

554
            # required: distributed
555 556 557 558 559 560 561 562 563 564 565 566 567 568
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
569
    """
K
kuizhiqing 已提交
570 571 572 573 574 575 576

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
577
    if in_dygraph_mode():
578 579 580 581 582 583 584 585 586 587 588
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        assert gsrc >= 0, ("src rank out of group, need global rank")
        task = group.process_group.broadcast(tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

    ring_id = ring_id = 0 if group is None else group.id
K
kuizhiqing 已提交
589
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
590
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
591

J
Jiabin Yang 已提交
592
    if _non_static_mode():
W
wanghuancoder 已提交
593 594 595
        return _C_ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                  'use_calc_stream', use_calc_stream, 'ring_id',
                                  ring_id)
596 597 598 599 600 601 602 603 604 605 606 607

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
608 609 610
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
611 612 613
        })


K
kuizhiqing 已提交
614
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
615 616 617
    """

    Reduce a tensor over all ranks so that all get the result.
618 619 620 621 622 623 624 625
    As shown below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. The reduce operator is sum. Through all_reduce operator, 
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center
626 627 628 629

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
630
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
631
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
632 633
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
634 635 636 637 638 639 640

    Returns:
        None.

    Examples:
        .. code-block:: python

641
            # required: distributed
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
657
    """
K
kuizhiqing 已提交
658 659 660
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
661
    if in_dygraph_mode():
662 663 664 665 666 667
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
668 669
        elif op == ReduceOp.PROD:
            op_type = core.ReduceOp.PRODUCT
670 671 672 673 674 675 676 677 678 679
        else:
            raise ValueError("Unknown reduce_op type for allreduce.")
        group = _get_default_group() if group is None else group
        task = group.process_group.allreduce(tensor, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

K
kuizhiqing 已提交
680
    ring_id = 0 if group is None else group.id
J
Jiabin Yang 已提交
681
    if _non_static_mode():
682
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
683 684
            return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
685
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
686 687
            return _C_ops.c_allreduce_max_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
688
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
689 690
            return _C_ops.c_allreduce_min_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
691
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
692 693
            return _C_ops.c_allreduce_prod_(tensor, 'use_calc_stream',
                                            use_calc_stream, 'ring_id', ring_id)
694 695 696 697 698 699 700 701 702 703 704 705 706 707
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
708 709
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
710 711 712 713 714
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
715 716
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
717 718


K
kuizhiqing 已提交
719
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
720 721
    """

722 723 724 725 726 727 728 729
    Reduce a tensor to the destination from all others. As shown below, 4 GPUs each start 4 processes and the data on each GPU is respresnted
    by the GPU number. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
    the GPU0 will owns the sum of all data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png
        :width: 800
        :alt: reduce
        :align: center
730 731 732 733 734

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
735
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
736
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
737 738
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
739 740 741 742 743 744 745

    Returns:
        None.

    Examples:
        .. code-block:: python

746
            # required: distributed
747 748 749 750 751 752 753 754 755 756 757 758 759 760
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
761
    """
K
kuizhiqing 已提交
762 763 764
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
765
    if in_dygraph_mode():
766 767 768 769 770 771
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
772 773
        elif op == ReduceOp.PROD:
            op_type = core.ReduceOp.PRODUCT
774 775 776 777 778 779 780 781 782 783 784
        else:
            raise ValueError("Unknown reduce_op type for reduce.")
        group = _get_default_group() if group is None else group
        gdst = group.get_group_rank(dst)
        assert gdst >= 0, ("dst rank out of group, need global rank")
        task = group.process_group.reduce(tensor, gdst, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task
K
kuizhiqing 已提交
785 786 787

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
788
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
789

J
Jiabin Yang 已提交
790
    if _non_static_mode():
791
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
792 793 794
            return _C_ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
795
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
796 797 798
            return _C_ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
799
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
800 801 802
            return _C_ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
803
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
804 805 806
            return _C_ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
                                        use_calc_stream, 'ring_id', ring_id,
                                        'root_id', gdst)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
830 831 832
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
833 834 835
        })


K
kuizhiqing 已提交
836
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
837 838
    """

839 840 841 842 843 844 845 846 847
    Gather tensors from all participators and all get the result. As shown
    below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. Through the all_gather operator, each GPU will have data
    from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png
        :width: 800
        :alt: all_gather
        :align: center
848 849 850 851 852 853

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
854
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
855 856
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
857 858 859 860 861 862 863

    Returns:
        None.

    Examples:
        .. code-block:: python

864
            # required: distributed
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
884
    """
K
kuizhiqing 已提交
885 886 887
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
888
    if in_dygraph_mode():
889
        group = _get_default_group() if group is None else group
890 891 892 893 894 895
        if len(tensor_list) == 0:
            tensor_shape = list(tensor.shape)
            tensor_shape[0] *= group.nranks
            out = paddle.empty(tensor_shape, tensor.dtype)
        else:
            out = paddle.concat(tensor_list, axis=0)
896 897 898 899 900 901
        task = group.process_group.all_gather(tensor, out)
        task.wait()
        tensor_list.clear()
        tensor_list.extend(paddle.split(out, group.nranks, 0))
        return

K
kuizhiqing 已提交
902 903 904
    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

J
Jiabin Yang 已提交
905
    if _non_static_mode():
906 907
        out = _C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream,
                                 'ring_id', ring_id, 'nranks', nranks)
908
    else:
909 910 911
        op_type = 'c_allgather'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
928 929 930
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
931 932
            })

K
kuizhiqing 已提交
933
    tensor_list.extend(paddle.split(out, nranks, 0))
934 935


K
kuizhiqing 已提交
936
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
937 938
    """

939 940 941 942 943 944 945
    Scatter a tensor to all participators. As shown below, 4 GPUs each start 4 processes and the source of the scatter
    is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
        :width: 800
        :alt: scatter
        :align: center
946 947 948 949

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
950
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
951 952
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
953
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
954 955
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
956 957 958 959 960 961 962

    Returns:
        None.

    Examples:
        .. code-block:: python

963
            # required: distributed
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
983
    """
K
kuizhiqing 已提交
984 985 986 987 988 989
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
990
    if in_dygraph_mode():
991 992 993 994 995 996 997 998 999
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        rank = group.rank
        nranks = group.nranks
    else:
        ring_id = 0 if group is None else group.id
        gsrc = src if group is None else group.get_group_rank(src)
        rank = _get_global_group().rank if group is None else group.rank
        nranks = _get_global_group().nranks if group is None else group.nranks
K
kuizhiqing 已提交
1000
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
1001 1002

    if rank != gsrc:
1003 1004 1005 1006
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
L
lilong12 已提交
1007
    if in_dygraph_mode():
1008 1009 1010 1011 1012 1013 1014
        task = group.process_group.scatter(temp, tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1015
    if _non_static_mode():
W
wanghuancoder 已提交
1016 1017 1018
        return _C_ops.c_scatter(temp, tensor, 'use_calc_stream',
                                use_calc_stream, 'ring_id', ring_id, 'nranks',
                                nranks, 'root', gsrc)
W
wanghuancoder 已提交
1019
    op_type = 'c_scatter'
1020 1021 1022 1023 1024 1025 1026 1027 1028
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
1029 1030 1031
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
1032 1033 1034 1035
            'nranks': nranks,
        })


1036
def _c_identity(tensor, group=None):
L
lilong12 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1048 1049 1050 1051
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1052
    if _non_static_mode():
W
wanghuancoder 已提交
1053 1054
        return _C_ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                 ring_id, 'use_model_parallel', True)
L
lilong12 已提交
1055 1056 1057
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1058

L
lilong12 已提交
1059 1060 1061
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
1062

L
lilong12 已提交
1063 1064 1065 1066 1067
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1068
            'ring_id': ring_id,
L
lilong12 已提交
1069 1070 1071 1072 1073 1074
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


1075
def _c_concat(tensor, group=None):
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
1089 1090
    group = _get_default_group() if group is None else group
    ring_id = group.id
1091

1092
    global_rank = _get_global_env().rank
1093 1094
    rank = group.rank
    nranks = group.nranks
1095

J
Jiabin Yang 已提交
1096
    if _non_static_mode():
W
wanghuancoder 已提交
1097 1098 1099
        return _C_ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                               True, 'rank', rank, 'nranks', nranks,
                               'use_model_parallel', True)
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
1117 1118
            'nranks': nranks,
            'rank': rank
1119 1120 1121 1122
        })
    return out


1123
def _c_split(tensor, group=None):
L
lilong12 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1136 1137 1138 1139
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1140 1141 1142 1143
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

J
Jiabin Yang 已提交
1144
    if _non_static_mode():
W
wanghuancoder 已提交
1145 1146 1147
        return _C_ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                              ring_id, 'rank', rank, 'nranks', nranks,
                              'use_model_parallel', True)
1148

L
lilong12 已提交
1149 1150 1151
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1152

L
lilong12 已提交
1153 1154 1155
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
1156

L
lilong12 已提交
1157 1158 1159 1160 1161
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1162
            'ring_id': ring_id,
L
lilong12 已提交
1163 1164 1165 1166 1167 1168 1169 1170
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


1171 1172 1173 1174 1175
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
1176
    """[it is same as allreduce above, but it supports model parallel. And it support inplace startegy]
1177 1178 1179 1180 1181
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    if in_dygraph_mode():
        assert op == ReduceOp.SUM, "Unknown parameter: {}.".format(op)

        from paddle.autograd import EagerPyLayer

        class mp_allreduce_eager(EagerPyLayer):
            @staticmethod
            def forward(ctx, tensor, use_calc_stream, ring_id,
                        use_model_parallel):
                ctx.ring_id = ring_id
                return _C_ops.c_allreduce_sum_(
                    tensor, 'use_calc_stream', use_calc_stream, 'ring_id',
                    ring_id, "use_model_parallel", use_model_parallel)

            @staticmethod
            def backward(ctx, dy):
                return _C_ops.c_identity(dy, 'use_calc_stream', True, 'ring_id',
                                         ctx.ring_id, 'use_model_parallel',
                                         True)

        return mp_allreduce_eager.apply(tensor, use_calc_stream, ring_id,
                                        use_model_parallel)

    elif _in_legacy_dygraph():
1206
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
1207
            return _C_ops.c_allreduce_sum_(
1208 1209 1210 1211
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

    op_type = 'c_allreduce_sum'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        op_type)

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'use_model_parallel': use_model_parallel,
        })
    return out
1231 1232


1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
J
Jiabin Yang 已提交
1247
    if _non_static_mode():
W
wanghuancoder 已提交
1248
        return _C_ops.c_embedding(table, index, "start_index", start_index)
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    op_type = 'c_embedding'
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name='table')
    check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='c_embedding',
        inputs={'Ids': index,
                'W': table},
        outputs={'Out': tmp},
        attrs={"start_index": start_index})
    return tmp

1263

B
Baibaifan 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
def _c_softmax_with_cross_entropy(logits,
                                  label,
                                  group=None,
                                  return_softmax=False):
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

J
Jiabin Yang 已提交
1322
    if _non_static_mode():
W
wanghuancoder 已提交
1323
        softmax, loss = _C_ops.c_softmax_with_cross_entropy(
1324 1325 1326 1327 1328 1329
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

W
WangXi 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    attrs = {
        'ring_id': ring_id,
        'rank': rank,
        'nranks': nranks,
    }
    helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    helper.append_op(
        type='c_softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs=attrs)

    if return_softmax:
        return loss, softmax

    return loss

1351

B
Baibaifan 已提交
1352 1353 1354 1355
def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
J
Jiabin Yang 已提交
1356
    if _non_static_mode():
B
Baibaifan 已提交
1357
        pre_bias = _varbase_creator(dtype=x.dtype)
W
wanghuancoder 已提交
1358 1359
        _C_ops.matmul(x, weight, pre_bias, 'transpose_X', False, 'transpose_Y',
                      False, "alpha", 1)
B
Baibaifan 已提交
1360 1361 1362 1363 1364
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1)
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
B
Baibaifan 已提交
1365 1366
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."
B
Baibaifan 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs)
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res


1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


L
lilong12 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
1418
                     group=None):
1419 1420
    """
    Parallel Linear
1421 1422 1423

    axis the dimension of the parameter of linear layer. 
    axis = 0: the row dimension
1424
    axis = 1: the col dimension
1425
    
1426
    """
1427 1428 1429 1430
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
1431 1432
    if axis == 0:
        if split_tensor:
1433
            x = _c_split(x, group=group)
1434
    else:
L
lilong12 已提交
1435 1436
        x = _c_identity(x, group=group)

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    # NOTE: npu linear function use matmul_v2 but linear use matmul
    linear_function = _linear if core.is_compiled_with_npu()\
        else paddle.nn.functional.linear
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
        linear.name)

    _set_var_distributed(linear.weight)
1455 1456 1457 1458
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
1459
        _set_var_distributed(linear.bias)
L
lilong12 已提交
1460 1461 1462 1463 1464

    if not gather_out: return linear_out

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
1465
    main_block = paddle.static.default_main_program().current_block()
L
lilong12 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1480
                'ring_id': ring_id,
L
lilong12 已提交
1481 1482 1483
                'use_calc_stream': True,
                'use_model_parallel': True
            })
1484 1485
        if linear.bias is not None:
            out = out + linear.bias
L
lilong12 已提交
1486 1487 1488 1489 1490 1491
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1492
                'rank': inner_rank,
1493
                'ring_id': ring_id,
L
lilong12 已提交
1494 1495 1496 1497 1498
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
1499 1500


L
lilong12 已提交
1501 1502 1503 1504 1505 1506 1507
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
1508
                        group=None):
1509 1510 1511
    """
    Parallel Embedding
    """
1512 1513 1514 1515
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

    weight = helper.create_parameter(
        attr=param_attr, shape=size, dtype=dtype, is_bias=False)

    if num_partitions == 1:
        return paddle.nn.functional.embedding(
            x, weight=weight, padding_idx=None, sparse=False, name=name)

1532 1533
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

    output_parallel = paddle.distributed.collective._c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name)
    out = paddle.distributed.collective._mp_allreduce(
        output_parallel,
        group=group,
        use_calc_stream=True,
        use_model_parallel=True)
L
lilong12 已提交
1544
    return out
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

1593 1594 1595 1596 1597
    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is 
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

1616 1617 1618 1619 1620
    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and 
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output. 

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center
    
    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python
1658

1659
            # required: distributed
1660
            import paddle
1661
            import paddle.distributed.fleet as fleet
1662

1663
            paddle.enable_static()
1664
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
1665
            fleet.init(is_collective=True)
1666
            data = paddle.randint(0, 8, shape=[10,4])
1667
            emb_out = paddle.distributed.split(
1668 1669 1670 1671
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
J
Jiabin Yang 已提交
1689
    if _non_static_mode():
L
lilong12 已提交
1690 1691 1692 1693
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1694
    else:
1695
        from .fleet import fleet
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
1707 1708 1709
        assert size[0] % num_partitions == 0, \
            "The length of the vocabulary must be divisible by num_partitions " \
            "but received vocabulary={} num_partitions={}".format(size[0], num_partitions)
1710

1711
        per_part_size = size[0] // num_partitions
B
Baibaifan 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=None)
        return emb_out
1722
    else:
L
lilong12 已提交
1723
        should_split = False
1724 1725 1726 1727 1728 1729 1730
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1731
            if x.shape[-1] == size[0]: should_split = True
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1753 1754 1755
            num_partitions,
            should_split,
            name=name,
1756
            group=None)
1757
        return linear_out
L
lilong12 已提交
1758 1759


L
lilong12 已提交
1760 1761
def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
    """
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
    Scatter tensors in in_tensor_list to all participators averagely and gather the result tensors in out_tensor_list.
    As shown below, the in_tensor_list in GPU0 includes 0_0 and 0_1, and GPU1 includes 1_0 and 1_1.
    Through alltoall operator, the 0_0 in GPU0 will be sent to GPU0 and 0_1 to GPU1, 1_0 in GPU1 sent to GPU0 and 1_1 to GPU1.
    Finally the out_tensor_list in GPU0 includes 0_0 and 1_0, and GPU1 includes 0_1 and 1_1.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/alltoall.png
        :width: 800
        :alt: alltoall
        :align: center

L
lilong12 已提交
1772 1773 1774 1775 1776 1777 1778
    Args:
        in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        out_tensor_list (Tensor): A list of output Tensors. The data type of its elements should be the same as the
            data type of the input Tensors.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
1779
    
L
lilong12 已提交
1780 1781
    Returns:
        None.
1782
    
L
lilong12 已提交
1783 1784
    Examples:
        .. code-block:: python
1785

L
lilong12 已提交
1786 1787 1788 1789
            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
1790
            
L
lilong12 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
            init_parallel_env()
            out_tensor_list = []
            if paddle.distributed.ParallelEnv().rank == 0:
                np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
                np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
            else:
                np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
                np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
李季 已提交
1801
            paddle.distributed.alltoall([data1, data2], out_tensor_list)
L
lilong12 已提交
1802 1803 1804 1805 1806 1807
            # out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
            # out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
1808
    if in_dygraph_mode():
1809 1810 1811 1812
        group = _get_default_group() if group is None else group
    else:
        ring_id = 0 if group is None else group.id

L
lilong12 已提交
1813
    temp = paddle.concat(in_tensor_list, axis=0)
李季 已提交
1814
    nranks = len(in_tensor_list)
L
lilong12 已提交
1815
    if in_dygraph_mode():
1816 1817 1818 1819 1820 1821
        if len(out_tensor_list) == 0:
            tensor_shape = list(in_tensor_list[0].shape)
            tensor_shape[0] *= nranks
            out = paddle.empty(tensor_shape, in_tensor_list[0].dtype)
        else:
            out = paddle.concat(out_tensor_list, axis=0)
1822 1823 1824 1825 1826 1827
        task = group.process_group.alltoall(temp, out)
        task.wait()
        out_tensor_list.clear()
        out_tensor_list.extend(paddle.split(out, nranks, 0))
        return

J
Jiabin Yang 已提交
1828
    if _non_static_mode():
李季 已提交
1829 1830
        out = _C_ops.alltoall(temp, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id)
L
lilong12 已提交
1831
    else:
W
wanghuancoder 已提交
1832 1833 1834 1835 1836
        op_type = 'alltoall'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(
            dtype=in_tensor_list[0].dtype)

L
lilong12 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        if not isinstance(in_tensor_list, list):
            raise ValueError("The type of 'in_tensor_list' for all_to_all "
                             "should be list.")
        for elem in in_tensor_list:
            check_variable_and_dtype(
                elem, 'in_tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_to_all')
        if not isinstance(out_tensor_list, list):
            raise ValueError("The type of 'out_tensor_list' for all_to_all "
                             "should be list.")
        if len(out_tensor_list) != 0:
            raise ValueError("The 'out_tensor_list' for all_to_all "
                             "must be an empty list.")
        helper.append_op(
            type=op_type,
            inputs={'X': [temp]},
            outputs={'Out': [out]},
            attrs={
L
lilong12 已提交
1856
                'ring_id': ring_id,
L
lilong12 已提交
1857 1858 1859 1860 1861
                'use_calc_stream': use_calc_stream,
            })
    out_tensor_list.extend(paddle.split(out, nranks, 0))


L
lilong12 已提交
1862 1863 1864 1865 1866 1867 1868 1869
def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
1870 1871
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1872
    
L
lilong12 已提交
1873 1874 1875 1876 1877
    Returns:
        None.

    Examples:
        .. code-block:: python
1878

L
lilong12 已提交
1879
            # required: distributed
L
lilong12 已提交
1880
            import paddle
L
lilong12 已提交
1881
            from paddle.distributed import init_parallel_env
1882

L
lilong12 已提交
1883 1884 1885 1886 1887 1888 1889 1890
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1891 1892 1893
    """
    if group is not None and not group.is_member():
        return
1894

L
lilong12 已提交
1895
    if in_dygraph_mode():
1896 1897 1898 1899 1900 1901 1902 1903
        group = _get_default_group() if group is None else group
        task = group.process_group.send(tensor, dst)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1904 1905
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1906
    if _non_static_mode():
W
wanghuancoder 已提交
1907 1908
        return _C_ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', dst)
W
wanghuancoder 已提交
1909
    op_type = 'send_v2'
L
lilong12 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
1933 1934
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1935
    
L
lilong12 已提交
1936 1937 1938 1939 1940
    Returns:
        None.

    Examples:
        .. code-block:: python
1941

L
lilong12 已提交
1942
            # required: distributed
L
lilong12 已提交
1943
            import paddle
L
lilong12 已提交
1944
            from paddle.distributed import init_parallel_env
1945

L
lilong12 已提交
1946 1947 1948 1949 1950 1951 1952 1953
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1954 1955 1956
    """
    if group is not None and not group.is_member():
        return
1957

L
lilong12 已提交
1958
    if in_dygraph_mode():
1959 1960 1961 1962 1963 1964 1965 1966
        group = _get_default_group() if group is None else group
        task = group.process_group.recv(tensor, src)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1967 1968
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1969
    if _non_static_mode():
W
wanghuancoder 已提交
1970 1971 1972
        return _C_ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', src, 'dtype',
                              tensor.dtype, 'out_shape', tensor.shape)
W
wanghuancoder 已提交
1973
    op_type = 'recv_v2'
L
lilong12 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })