collective.py 50.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
from ..fluid.layer_helper import LayerHelper
18 19 20 21 22 23 24 25
from ..fluid.framework import Variable
from ..fluid.framework import OpProtoHolder
from ..fluid.framework import in_dygraph_mode
from ..fluid.framework import convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
26 27
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
B
Baibaifan 已提交
28
from ..fluid.dygraph import layers
29 30
from ..fluid.dygraph.parallel import prepare_context
import paddle
31
from .fleet import fleet
32 33 34
import paddle.fluid as fluid
import paddle.fluid.core as core

35
__all__ = []
36 37 38


class ReduceOp:
L
lilong12 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
70 71 72 73 74 75
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3


K
kuizhiqing 已提交
76 77 78 79
class Group():
    """
    The abstract representation of group.
    """
80

K
kuizhiqing 已提交
81
    def __init__(self, rank, rank_num, id=0, ranks=[]):
82 83
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        self.id = id
        self.ranks = ranks

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.id == 0:
            return rank
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1

102 103 104 105 106 107 108
    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
            self.rank, self.nranks, self.id)
        debug_str += ", ".join(map(str, self.ranks))
        debug_str += ". "
        return debug_str

K
kuizhiqing 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}


def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
        _group_map[0] = Group(genv.rank, genv.world_size, 0)
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
147
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
    return gm[group] if group in gm else None


S
ShenLiang 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    op_type = 'barrier'
    temp = fill_constant([1], dtype="int32", value="1")
    if in_dygraph_mode():
        return core.ops.barrier(temp, temp, 'ring_id', ring_id)
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


K
kuizhiqing 已提交
205 206 207
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
208
    Creates a new distributed communication group.
K
kuizhiqing 已提交
209 210

    Args:
K
kuizhiqing 已提交
211
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
212 213 214
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
215
        Group: The group instance.
K
kuizhiqing 已提交
216 217 218 219 220 221 222

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
223 224 225
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

    """

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    global _group_map
    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
    else:
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        ranks = sorted(ranks)
        group_rank = ranks.index(global_rank)
        group_size = len(ranks)
        gp = Group(group_rank, group_size, ring_id, ranks)
        _group_map[ring_id] = gp

        if group_size >= 2:
            strategy = core.ParallelStrategy()
            strategy.nranks = group_size
            strategy.local_rank = group_rank
            strategy.trainer_endpoints = [
                genv.trainer_endpoints[i] for i in ranks
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
            else:
                assert False, ("no cuda device found")
        else:
            return gp

    # TODO(shenliang03): This is a temporary solution to solve the problem of 
    # hang caused by cross-creation of new_group
    tmp = fill_constant([0], dtype="int32", value="1")
    paddle.distributed.all_reduce(tmp, use_calc_stream=True)
    paddle.distributed.wait(tmp)
K
kuizhiqing 已提交
273 274
    return gp

275

K
kuizhiqing 已提交
276 277 278 279 280 281 282 283
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
284 285
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
286 287 288 289 290 291 292 293 294 295

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
296
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

    if in_dygraph_mode():
        return core.ops.c_sync_calc_stream(tensor, tensor)

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
325

326

K
kuizhiqing 已提交
327
def _sync_comm_stream(tensor, ring_id=0):
328

K
kuizhiqing 已提交
329 330 331
    if in_dygraph_mode():
        return core.ops.c_sync_comm_stream([tensor], [tensor], 'ring_id',
                                           ring_id)
332

K
kuizhiqing 已提交
333
    op_type = 'c_sync_comm_stream'
334

K
kuizhiqing 已提交
335 336 337 338 339 340 341 342 343
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
344 345 346 347 348 349 350 351
    """

    Broadcast a tensor from the source to all others.

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
352
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
353 354
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
355 356 357 358 359 360 361

    Returns:
        None.

    Examples:
        .. code-block:: python

362 363 364 365 366 367 368 369 370 371 372 373 374 375
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
376
    """
K
kuizhiqing 已提交
377 378 379 380 381 382 383 384 385

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
386
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
387

388
    if in_dygraph_mode():
K
kuizhiqing 已提交
389 390 391
        return core.ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                    'use_calc_stream', use_calc_stream,
                                    'ring_id', ring_id)
392 393 394 395 396 397 398 399 400 401 402 403

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
404 405 406
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
407 408 409
        })


K
kuizhiqing 已提交
410
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
411 412 413 414 415 416 417
    """

    Reduce a tensor over all ranks so that all get the result.

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
418
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
419
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
420 421
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
422 423 424 425 426 427 428

    Returns:
        None.

    Examples:
        .. code-block:: python

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
444
    """
K
kuizhiqing 已提交
445 446 447 448
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
449 450
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
451 452
            return core.ops.c_allreduce_sum_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
453
        elif op == ReduceOp.MAX:
454 455
            return core.ops.c_allreduce_max_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
456
        elif op == ReduceOp.MIN:
457 458
            return core.ops.c_allreduce_min_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
459
        elif op == ReduceOp.PROD:
460 461
            return core.ops.c_allreduce_prod_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
462 463
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
464
        return out
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for all_reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
480 481
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
482 483 484 485 486
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
487 488
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
489 490


K
kuizhiqing 已提交
491
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
492 493 494 495 496 497 498 499
    """

    Reduce a tensor to the destination from all others.

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
500
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
501
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
502 503
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
504 505 506 507 508 509 510

    Returns:
        None.

    Examples:
        .. code-block:: python

511 512 513 514 515 516 517 518 519 520 521 522 523 524
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
525
    """
K
kuizhiqing 已提交
526 527 528 529 530 531 532 533
    if group is not None and not group.is_member():
        return

    if not isinstance(dst, int):
        raise ValueError("dst should be int.")

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
534
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
535

536 537 538
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
539 540
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
541 542
        elif op == ReduceOp.MAX:
            return core.ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
543 544
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
545 546
        elif op == ReduceOp.MIN:
            return core.ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
547 548
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
549 550
        elif op == ReduceOp.PROD:
            return core.ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
551 552
                                          use_calc_stream, 'ring_id', ring_id,
                                          'root_id', gdst)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
579 580 581
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
582 583 584
        })


K
kuizhiqing 已提交
585
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
586 587 588 589 590 591 592 593 594
    """

    Gather tensors from all participators and all get the result.

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
595
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
596 597
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
598 599 600 601 602 603 604

    Returns:
        None.

    Examples:
        .. code-block:: python

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
624
    """
K
kuizhiqing 已提交
625 626 627 628 629 630
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

631 632 633
    op_type = 'c_allgather'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
K
kuizhiqing 已提交
634

635
    if in_dygraph_mode():
K
kuizhiqing 已提交
636 637
        core.ops.c_allgather(tensor, out, 'use_calc_stream', use_calc_stream,
                             'ring_id', ring_id, 'nranks', nranks)
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    else:
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
655 656 657
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
658 659
            })

K
kuizhiqing 已提交
660
    tensor_list.extend(paddle.split(out, nranks, 0))
661 662


K
kuizhiqing 已提交
663
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
664 665 666 667 668 669 670
    """

    Scatter a tensor to all participators.

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
671
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
672 673
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
674
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
675 676
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
677 678 679 680 681 682 683

    Returns:
        None.

    Examples:
        .. code-block:: python

684 685 686 687
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

688 689
            # required: gpu

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
705
    """
K
kuizhiqing 已提交
706 707 708 709 710 711 712 713
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
714
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
715 716 717
    rank = _get_global_group().rank if group is None else group.rank
    nranks = _get_global_group().nranks if group is None else group.nranks

718
    op_type = 'c_scatter'
K
kuizhiqing 已提交
719 720

    if rank != gsrc:
721 722 723 724 725
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
    if in_dygraph_mode():
K
kuizhiqing 已提交
726 727 728
        return core.ops.c_scatter(temp, tensor, 'use_calc_stream',
                                  use_calc_stream, 'ring_id', ring_id, 'nranks',
                                  nranks, 'root', gsrc)
729 730 731 732 733 734 735 736 737
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
738 739 740
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
741 742 743 744
            'nranks': nranks,
        })


745
def _c_identity(tensor, group=None):
L
lilong12 已提交
746 747 748 749 750 751 752 753 754 755 756
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
757 758 759 760 761 762 763
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                   ring_id, 'use_model_parallel', True)
L
lilong12 已提交
764 765 766
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
767

L
lilong12 已提交
768 769 770
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
771

L
lilong12 已提交
772 773 774 775 776
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
777
            'ring_id': ring_id,
L
lilong12 已提交
778 779 780 781 782 783
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


784
def _c_concat(tensor, group=None):
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

800 801 802 803
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

804 805
    if in_dygraph_mode():
        return core.ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
806 807
                                 True, 'rank', rank, 'nranks', nranks,
                                 'use_model_parallel', True)
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
825 826
            'nranks': nranks,
            'rank': rank
827 828 829 830
        })
    return out


831
def _c_split(tensor, group=None):
L
lilong12 已提交
832 833 834 835 836 837 838 839 840 841 842 843
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
844 845 846 847
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

848 849 850 851
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

852 853 854 855 856
    if in_dygraph_mode():
        return core.ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                                ring_id, 'rank', rank, 'nranks', nranks,
                                'use_model_parallel', True)

L
lilong12 已提交
857 858 859
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
860

L
lilong12 已提交
861 862 863
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
864

L
lilong12 已提交
865 866 867 868 869
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
870
            'ring_id': ring_id,
L
lilong12 已提交
871 872 873 874 875 876 877 878
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it suuports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_allreduce_sum_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
    else:
        raise NotImplementedError("No support _mp_allreduce in dygraph mode.")


901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
    if in_dygraph_mode():
        return core.ops.c_embedding(table, index, "start_index", start_index)


B
Baibaifan 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
    if in_dygraph_mode():
        pre_bias = _varbase_creator(dtype=x.dtype)
        core.ops.matmul(x, weight, pre_bias, 'transpose_X', False,
                        'transpose_Y', False, "alpha", 1)
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1)
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
B
Baibaifan 已提交
970 971
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."
B
Baibaifan 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs)
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res


L
lilong12 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
1010
                     group=None):
1011 1012
    """
    Parallel Linear
1013 1014 1015 1016 1017

    axis the dimension of the parameter of linear layer. 
    axis = 0: the row dimension
    axid = 1: the col dimension
    
1018
    """
1019 1020 1021 1022
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
1023 1024
    if axis == 0:
        if split_tensor:
1025
            x = _c_split(x, group=group)
1026
    else:
L
lilong12 已提交
1027 1028
        x = _c_identity(x, group=group)

B
Baibaifan 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    if core.is_compiled_with_npu():
        linear = _Linear(
            num_rows,
            num_cols,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)
    else:
        linear = paddle.nn.Linear(
            num_rows,
            num_cols,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)
1043 1044

    linear_out = linear(x)
李季 已提交
1045 1046 1047 1048 1049
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(linear.weight.name).is_distributed = True
    main_block._find_var_recursive(linear.weight.name).is_distributed = True

1050 1051 1052 1053
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
李季 已提交
1054 1055 1056
        startup_block._find_var_recursive(
            linear.bias.name).is_distributed = True
        main_block._find_var_recursive(linear.bias.name).is_distributed = True
L
lilong12 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

    if not gather_out: return linear_out

    op_type = 'c_allreduce_sum' if axis == 0 else 'c_concat'
    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1077
                'ring_id': ring_id,
L
lilong12 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1087
                'ring_id': ring_id,
L
lilong12 已提交
1088 1089 1090 1091 1092
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
1093 1094


L
lilong12 已提交
1095 1096 1097 1098 1099 1100 1101
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
1102
                        group=None):
1103 1104 1105
    """
    Parallel Embedding
    """
1106 1107 1108 1109
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    origin_num_embeddings = origin_size[0]
    embedding = paddle.nn.Embedding(
        per_part_embeddings,
        origin_size[1],
        padding_idx=per_part_embeddings - 1,
        sparse=False,
        weight_attr=param_attr,
        name=name)

    origin_input_shape = x.shape
    if len(origin_input_shape) == 2:
        x = paddle.unsqueeze(x, axis=-1)
    else:
        assert origin_input_shape[-1] == 1, (
            "The last dimension size of x must be 1.")
    x_shard = paddle.shard_index(x, origin_num_embeddings, num_partitions,
                                 inner_rank, per_part_embeddings - 1)
    if len(origin_input_shape) == 2:
        x_shard = paddle.squeeze(x_shard, axis=-1)
    emb_out = embedding(x_shard)
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
    startup_block.vars[embedding.weight.name].is_distributed = True
    main_block.vars[embedding.weight.name].is_distributed = True
L
lilong12 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    out = main_block.create_var(
        shape=emb_out.shape,
        dtype=emb_out.dtype,
        type=emb_out.type,
        lod_level=emb_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=emb_out.desc.need_check_feed())
    main_block.append_op(
        type='c_allreduce_sum',
        inputs={'X': emb_out},
        outputs={'Out': out},
        attrs={
1147
            'ring_id': ring_id,
L
lilong12 已提交
1148 1149 1150 1151
            'use_calc_stream': True,
            'use_model_parallel': True
        })
    return out
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

1219 1220
            # required: gpu

1221 1222 1223
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            data = paddle.randint(0, 8, shape=[10,4])
1224
            emb_out = paddle.distributed.split(
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
    if in_dygraph_mode():
L
lilong12 已提交
1246 1247 1248 1249
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
    else:
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
        per_part_size = (size[0] + num_partitions - 1) // num_partitions
        last_part_size = size[0] - per_part_size * (num_partitions - 1)
        if inner_rank == num_partitions - 1: per_part_size = last_part_size
        per_part_size += 1  # make the last row as the padding index

L
lilong12 已提交
1267 1268 1269 1270 1271 1272 1273 1274
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
1275
            group=None)
1276 1277
        return emb_out
    else:
L
lilong12 已提交
1278
        should_split = False
1279 1280 1281 1282 1283 1284 1285
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1286
            if x.shape[-1] == size[0]: should_split = True
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1308 1309 1310
            num_partitions,
            should_split,
            name=name,
1311
            group=None)
1312
        return linear_out
L
lilong12 已提交
1313 1314


L
lilong12 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
    """
    Scatter tensors in in_tensor_list to all participators and gather the result tensors in out_tensor_list.
    Args:
        in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        out_tensor_list (Tensor): A list of output Tensors. The data type of its elements should be the same as the
            data type of the input Tensors.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
    Returns:
        None.
    Examples:
        .. code-block:: python
            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
            init_parallel_env()
            out_tensor_list = []
            if paddle.distributed.ParallelEnv().rank == 0:
                np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
                np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
            else:
                np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
                np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            paddle.distributed.all_to_all([data1, data2], out_tensor_list)
            # out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
            # out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    op_type = 'alltoall'
    temp = paddle.concat(in_tensor_list, axis=0)
    helper = LayerHelper(op_type, **locals())
    nranks = len(in_tensor_list)
    out = helper.create_variable_for_type_inference(
        dtype=in_tensor_list[0].dtype)
    if in_dygraph_mode():
        core.ops.alltoall_(temp, 'use_calc_stream', use_calc_stream, 'ring_id',
                           ring_id)
    else:
        if not isinstance(in_tensor_list, list):
            raise ValueError("The type of 'in_tensor_list' for all_to_all "
                             "should be list.")
        for elem in in_tensor_list:
            check_variable_and_dtype(
                elem, 'in_tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_to_all')
        if not isinstance(out_tensor_list, list):
            raise ValueError("The type of 'out_tensor_list' for all_to_all "
                             "should be list.")
        if len(out_tensor_list) != 0:
            raise ValueError("The 'out_tensor_list' for all_to_all "
                             "must be an empty list.")
        helper.append_op(
            type=op_type,
            inputs={'X': [temp]},
            outputs={'Out': [out]},
            attrs={
                'ring_id': group,
                'use_calc_stream': use_calc_stream,
            })
    out_tensor_list.extend(paddle.split(out, nranks, 0))


L
lilong12 已提交
1386 1387 1388 1389 1390 1391 1392 1393
def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
1394 1395
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
L
lilong12 已提交
1396 1397 1398 1399 1400
    Returns:
        None.

    Examples:
        .. code-block:: python
L
lilong12 已提交
1401
            # required: distributed
L
lilong12 已提交
1402
            import paddle
L
lilong12 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411
            from paddle.distributed import init_parallel_env
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    op_type = 'send_v2'
    if in_dygraph_mode():
        return core.ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                                'ring_id', ring_id, 'peer', dst)
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
1444 1445
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
L
lilong12 已提交
1446 1447 1448 1449 1450
    Returns:
        None.

    Examples:
        .. code-block:: python
L
lilong12 已提交
1451
            # required: distributed
L
lilong12 已提交
1452
            import paddle
L
lilong12 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461
            from paddle.distributed import init_parallel_env
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    op_type = 'recv_v2'
    if in_dygraph_mode():
        return core.ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                                'ring_id', ring_id, 'peer', src, 'dtype',
                                tensor.dtype, 'out_shape', tensor.shape)
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })