elementwise_min_op.h 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

L
LJQ❤️ 已提交
17
#include <cmath>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
W
wanghuancoder 已提交
19

F
fengjiayi 已提交
20 21 22 23 24 25 26
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ElementwiseMinKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
27 28 29
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
30 31 32

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
33 34
    ElementwiseComputeEx<MinFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MinFunctor<T>(), z);
F
fengjiayi 已提交
35 36 37
  }
};

L
LJQ❤️ 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
template <typename DeviceContext, typename T>
class ElementwiseFMinKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
    ElementwiseComputeEx<FMinFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                           FMinFunctor<T>(), z);
  }
};

F
fengjiayi 已提交
53
template <typename T>
C
chengduoZH 已提交
54 55 56
struct MinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x < y);
F
fengjiayi 已提交
57 58 59 60
  }
};

template <typename T>
C
chengduoZH 已提交
61 62 63
struct MinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x >= y);
F
fengjiayi 已提交
64 65 66
  }
};

S
sneaxiy 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#ifdef PADDLE_CUDA_FP16
template <>
struct MinGradDx<platform::float16> {
  HOSTDEVICE platform::float16 operator()(platform::float16 x,
                                          platform::float16 y,
                                          platform::float16 out,
                                          platform::float16 dout) const {
    return x < y ? dout : static_cast<platform::float16>(0);
  }
};

template <>
struct MinGradDy<platform::float16> {
  HOSTDEVICE platform::float16 operator()(platform::float16 x,
                                          platform::float16 y,
                                          platform::float16 out,
                                          platform::float16 dout) const {
    return x >= y ? dout : static_cast<platform::float16>(0);
  }
};
#endif

F
fengjiayi 已提交
89
template <typename DeviceContext, typename T>
90
class ElementwiseMinGradKernel : public ElemwiseGradKernel<T> {
F
fengjiayi 已提交
91 92
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
93
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
94 95 96 97 98 99 100
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
101
    auto* out = dout;  // Fake out, not used
C
chengduoZH 已提交
102
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
103 104
    ElemwiseGradCompute<DeviceContext, T, MinGradDx<T>, MinGradDy<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MinGradDx<T>(), MinGradDy<T>());
F
fengjiayi 已提交
105 106
  }
};
L
LJQ❤️ 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

template <typename T>
struct FMinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>((x <= y) || isnan(y));
  }
};

template <>
struct FMinGradDx<paddle::platform::float16> {
  HOSTDEVICE paddle::platform::float16 operator()(
      paddle::platform::float16 x, paddle::platform::float16 y,
      paddle::platform::float16 out, paddle::platform::float16 dout) const {
    return dout * static_cast<paddle::platform::float16>(
                      (x <= y) || paddle::platform::isnan(y));
  }
};

template <>
struct FMinGradDx<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>((x <= y));
  }
};

template <>
struct FMinGradDx<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x, int64_t y, int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>((x <= y));
  }
};

template <typename T>
struct FMinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(!((x <= y) || isnan(y)));
  }
};

template <>
struct FMinGradDy<paddle::platform::float16> {
  HOSTDEVICE paddle::platform::float16 operator()(
      paddle::platform::float16 x, paddle::platform::float16 y,
      paddle::platform::float16 out, paddle::platform::float16 dout) const {
    return dout * static_cast<paddle::platform::float16>(
                      !((x <= y) || paddle::platform::isnan(y)));
  }
};

template <>
struct FMinGradDy<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>(!((x <= y)));
  }
};

template <>
struct FMinGradDy<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x, int64_t y, int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>(!((x <= y)));
  }
};

template <typename DeviceContext, typename T>
class ElementwiseFMinGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* out = dout;  // Fake out, not used
    int axis = ctx.Attr<int>("axis");
    ElemwiseGradCompute<DeviceContext, T, FMinGradDx<T>, FMinGradDy<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, FMinGradDx<T>(),
        FMinGradDy<T>());
  }
};
F
fengjiayi 已提交
191 192
}  // namespace operators
}  // namespace paddle