elementwise_min_op.h 5.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

L
LJQ❤️ 已提交
17
#include <cmath>
18
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
W
Wu Yi 已提交
19 20
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
L
LJQ❤️ 已提交
21
#include "paddle/fluid/platform/eigen_ext.h"
W
wanghuancoder 已提交
22

F
fengjiayi 已提交
23 24 25 26 27 28 29
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ElementwiseMinKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
30 31 32
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
33 34 35

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
36 37
    ElementwiseComputeEx<MinFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MinFunctor<T>(), z);
F
fengjiayi 已提交
38 39 40
  }
};

L
LJQ❤️ 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
template <typename DeviceContext, typename T>
class ElementwiseFMinKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
    ElementwiseComputeEx<FMinFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                           FMinFunctor<T>(), z);
  }
};

F
fengjiayi 已提交
56
template <typename T>
C
chengduoZH 已提交
57 58 59
struct MinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x < y);
F
fengjiayi 已提交
60 61 62 63
  }
};

template <typename T>
C
chengduoZH 已提交
64 65 66
struct MinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x >= y);
F
fengjiayi 已提交
67 68 69 70
  }
};

template <typename DeviceContext, typename T>
71
class ElementwiseMinGradKernel : public ElemwiseGradKernel<T> {
F
fengjiayi 已提交
72 73
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
74
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
75 76 77 78 79 80 81
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
82
    auto* out = dout;  // Fake out, not used
C
chengduoZH 已提交
83
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
84 85
    ElemwiseGradCompute<DeviceContext, T, MinGradDx<T>, MinGradDy<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MinGradDx<T>(), MinGradDy<T>());
F
fengjiayi 已提交
86 87
  }
};
L
LJQ❤️ 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

template <typename T>
struct FMinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>((x <= y) || isnan(y));
  }
};

template <>
struct FMinGradDx<paddle::platform::float16> {
  HOSTDEVICE paddle::platform::float16 operator()(
      paddle::platform::float16 x, paddle::platform::float16 y,
      paddle::platform::float16 out, paddle::platform::float16 dout) const {
    return dout * static_cast<paddle::platform::float16>(
                      (x <= y) || paddle::platform::isnan(y));
  }
};

template <>
struct FMinGradDx<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>((x <= y));
  }
};

template <>
struct FMinGradDx<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x, int64_t y, int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>((x <= y));
  }
};

template <typename T>
struct FMinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(!((x <= y) || isnan(y)));
  }
};

template <>
struct FMinGradDy<paddle::platform::float16> {
  HOSTDEVICE paddle::platform::float16 operator()(
      paddle::platform::float16 x, paddle::platform::float16 y,
      paddle::platform::float16 out, paddle::platform::float16 dout) const {
    return dout * static_cast<paddle::platform::float16>(
                      !((x <= y) || paddle::platform::isnan(y)));
  }
};

template <>
struct FMinGradDy<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>(!((x <= y)));
  }
};

template <>
struct FMinGradDy<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x, int64_t y, int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>(!((x <= y)));
  }
};

template <typename DeviceContext, typename T>
class ElementwiseFMinGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* out = dout;  // Fake out, not used
    int axis = ctx.Attr<int>("axis");
    ElemwiseGradCompute<DeviceContext, T, FMinGradDx<T>, FMinGradDy<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, FMinGradDx<T>(),
        FMinGradDy<T>());
  }
};
F
fengjiayi 已提交
172 173
}  // namespace operators
}  // namespace paddle