multihead_matmul_fuse_pass.cc 63.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/multihead_matmul_fuse_pass.h"
W
wanghuancoder 已提交
16

17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/lod_tensor.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
W
Wilber 已提交
21 22 23
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/phi/common/data_type.h"
24 25 26 27 28 29

namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace paddle {
namespace framework {
namespace ir {
namespace patterns {

static void ReplaceOutputVar(Node* op, Node* old_var, Node* new_var) {
  if (op->IsOp() && op->Op()) {
    new_var->inputs.push_back(op);
    for (size_t i = 0; i < op->outputs.size(); ++i) {
      if (op->outputs[i] == old_var) {
        op->outputs[i] = new_var;
        op->Op()->RenameOutput(old_var->Name(), new_var->Name());
      }
    }
  }
}

static int BuildFusion(Graph* graph, const std::string& name_scope) {
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Create pattern.
  MultiHeadMatmulPattern multihead_pattern(pattern, name_scope);

55
  multihead_pattern();
56
  // Create New OpDesc
57 58 59 60 61 62 63 64 65 66 67 68 69 70
  auto fuse_creater = [&](Node* input0,
                          Node* mul0,
                          Node* mul1,
                          Node* mul2,
                          Node* mul0_out,
                          Node* mul1_out,
                          Node* mul2_out,
                          Node* eltadd0_b,
                          Node* eltadd1_b,
                          Node* eltadd2_b,
                          Node* eltadd_qk_b,
                          Node* reshape2,
                          Node* reshape2_qkv_out,
                          Node* scale,
71
                          Node* scale_out) {
R
Ruibiao Chen 已提交
72 73
    auto scale_attr = PADDLE_GET_CONST(float, scale->Op()->GetAttr("scale"));
    // auto scale_bias = PADDLE_GET_CONST(float, scale->Op()->GetAttr("bias"));
74
    // bool after_scale =
R
Ruibiao Chen 已提交
75
    //    PADDLE_GET_CONST(bool, scale->Op()->GetAttr("bias_after_scale"));
76 77

    // create multihead
78
    OpDesc multihead_op_desc(mul0->Op()->Block());
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

    // create tmp tensor
    VarDesc k_var_desc(*mul1_out->Var());
    k_var_desc.SetName("K" + mul1_out->Name());
    auto* k_var_node = graph->CreateVarNode(&k_var_desc);

    VarDesc q_var_desc(*mul0_out->Var());
    q_var_desc.SetName("Q" + mul0_out->Name());
    auto* q_var_node = graph->CreateVarNode(&q_var_desc);

    VarDesc v_var_desc(*mul2_out->Var());
    v_var_desc.SetName("V" + mul2_out->Name());
    auto* v_var_node = graph->CreateVarNode(&v_var_desc);

    auto reshape_desc = reshape2->Op();
    int head_number =
R
Ruibiao Chen 已提交
95 96
        PADDLE_GET_CONST(std::vector<int>, reshape_desc->GetAttr("shape"))
            .at(2);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    ReplaceOutputVar(mul0, mul0_out, q_var_node);
    ReplaceOutputVar(mul1, mul1_out, k_var_node);
    ReplaceOutputVar(mul2, mul2_out, v_var_node);

    multihead_op_desc.SetType("multihead_matmul");
    multihead_op_desc.SetInput("Q", {q_var_node->Name()});
    multihead_op_desc.SetInput("K", {k_var_node->Name()});
    multihead_op_desc.SetInput("V", {v_var_node->Name()});

    multihead_op_desc.SetInput("BiasQ", {eltadd0_b->Name()});
    multihead_op_desc.SetInput("BiasK", {eltadd1_b->Name()});
    multihead_op_desc.SetInput("BiasV", {eltadd2_b->Name()});
    multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()});

    multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()});
    multihead_op_desc.SetAttr("alpha", scale_attr);
    multihead_op_desc.SetAttr("head_number", head_number);

    auto* multihead = graph->CreateOpNode(&multihead_op_desc);
    IR_NODE_LINK_TO(q_var_node, multihead);
    IR_NODE_LINK_TO(k_var_node, multihead);
    IR_NODE_LINK_TO(v_var_node, multihead);

    IR_NODE_LINK_TO(eltadd0_b, multihead);
    IR_NODE_LINK_TO(eltadd1_b, multihead);
    IR_NODE_LINK_TO(eltadd2_b, multihead);
    IR_NODE_LINK_TO(eltadd_qk_b, multihead);

    IR_NODE_LINK_TO(multihead, reshape2_qkv_out);
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern);
133
    GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern);
134 135 136 137 138

    GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern);
139 140
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_0_out, reshape2_0_out, multihead_pattern);
141
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern);
142 143
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_0_out, transpose2_0_out, multihead_pattern);
144 145 146 147 148 149 150
    GET_IR_NODE_FROM_SUBGRAPH(scale, scale, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(scale_out, scale_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern);
151 152
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_1_out, reshape2_1_out, multihead_pattern);
153
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern);
154 155
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_1_out, transpose2_1_out, multihead_pattern);
156 157 158 159 160

    GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern);
161 162
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_2_out, reshape2_2_out, multihead_pattern);
163
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern);
164 165
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_2_out, transpose2_2_out, multihead_pattern);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

    // nodes need be removed
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern);
188 189
    GET_IR_NODE_FROM_SUBGRAPH(
        softmax_qk_out, softmax_qk_out, multihead_pattern);
190 191

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern);
192 193
    GET_IR_NODE_FROM_SUBGRAPH(
        matmul_qkv_out, matmul_qkv_out, multihead_pattern);
194 195

    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_qkv_out, reshape2_qkv_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv, transpose2_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv_out, transpose2_qkv_out, multihead_pattern);

    fuse_creater(input0,
                 mul0,
                 mul1,
                 mul2,
                 mul0_out,
                 mul1_out,
                 mul2_out,
                 eltadd0_b,
                 eltadd1_b,
                 eltadd2_b,
                 eltadd_qk_b,
                 reshape2_0,
                 reshape2_qkv_out,
                 scale,
                 scale_out);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    std::unordered_set<const Node*> marked_nodes(
        {eltadd0,
         eltadd1,
         eltadd2,
         eltadd0_out,
         eltadd1_out,
         eltadd2_out,
         reshape2_0,
         reshape2_1,
         reshape2_2,
         reshape2_0_out,
         reshape2_1_out,
         reshape2_2_out,
         transpose2_0,
         transpose2_1,
         transpose2_2,
         transpose2_0_out,
         transpose2_1_out,
         transpose2_2_out,
         matmul_qk,
         matmul_qk_out,
         eltadd_qk,
         eltadd_qk_out,
         softmax_qk,
         softmax_qk_out,  // dropout_qk, dropout_qk_out,
         transpose2_qkv,
         transpose2_qkv_out,
         matmul_qkv,
         matmul_qkv_out,
         mul0_out,
         mul1_out,
         mul2_out,
         reshape2_qkv,
         scale});
    // Remove unneeded nodes.
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);

  return fusion_count;
}

262
PDNode* MultiHeadMatmulPattern::operator()() {
W
Wilber 已提交
263 264
  std::unordered_set<std::string> mul_ops{"mul", "matmul_v2"};
  std::unordered_set<std::string> matmul_ops{"matmul", "matmul_v2"};
265
  auto* input0 = pattern->NewNode(input0_repr());
W
Wilber 已提交
266
  input0->assert_is_ops_input(mul_ops);
267 268

  // First path with scale
W
Wilber 已提交
269
  auto* mul0 = pattern->NewNode(mul0_repr())->assert_is_ops(mul_ops);
270 271
  auto* mul0_w_var = pattern->NewNode(mul0_w_repr())
                         ->AsInput()
W
Wilber 已提交
272
                         ->assert_is_ops_input(mul_ops, "Y");
273
  auto* mul0_out_var =
W
Wilber 已提交
274
      pattern->NewNode(mul0_out_repr())->assert_is_ops_output(mul_ops);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

  decltype(mul0) eltadd0;
  decltype(mul0) eltadd0_b_var;
  decltype(mul0) eltadd0_out_var;

  mul0_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  eltadd0 = pattern->NewNode(eltadd0_repr())->assert_is_op("elementwise_add");
  eltadd0_b_var = pattern->NewNode(eltadd0_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd0_out_var = pattern->NewNode(eltadd0_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd0_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_0 =
      pattern->NewNode(reshape2_0_repr())->assert_is_op("reshape2");

  auto* reshape2_0_out_var =
      pattern->NewNode(reshape2_0_out_repr())->assert_is_op_output("reshape2");
  reshape2_0_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_0 =
      pattern->NewNode(transpose2_0_repr())->assert_is_op("transpose2");
  auto* transpose2_0_out_var = pattern->NewNode(transpose2_0_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_0_out_var->AsIntermediate()->assert_is_op_input("scale");

  auto* scale = pattern->NewNode(scale_repr())->assert_is_op("scale");
  auto* scale_out_var =
      pattern->NewNode(scale_out_repr())->assert_is_op_output("scale");
W
Wilber 已提交
307
  scale_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops);
308

W
Wilber 已提交
309 310
  auto* matmul_qk =
      pattern->NewNode(matmul_qk_repr())->assert_is_ops(matmul_ops);
311
  auto* matmul_qk_out_var =
W
Wilber 已提交
312
      pattern->NewNode(matmul_qk_out_repr())->assert_is_ops_output(matmul_ops);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
  matmul_qk_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto* eltadd_qk =
      pattern->NewNode(eltadd_qk_repr())->assert_is_op("elementwise_add");
  auto* eltadd_qk_b_var = pattern->NewNode(eltadd_qk_b_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add", "Y");
  auto* eltadd_qk_out_var = pattern->NewNode(eltadd_qk_out_repr())
                                ->assert_is_op_output("elementwise_add");
  eltadd_qk_out_var->AsIntermediate()->assert_is_op_input("softmax");

  auto* softmax_qk =
      pattern->NewNode(softmax_qk_repr())->assert_is_op("softmax");
  auto* softmax_qk_out_var =
      pattern->NewNode(softmax_qk_out_repr())->assert_is_op_output("softmax");
W
Wilber 已提交
328
  softmax_qk_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops);
329 330

  auto* matmul_qkv =
W
Wilber 已提交
331
      pattern->NewNode(matmul_qkv_repr())->assert_is_ops(matmul_ops);
332
  auto* matmul_qkv_out_var =
W
Wilber 已提交
333
      pattern->NewNode(matmul_qkv_out_repr())->assert_is_ops_output(matmul_ops);
334 335 336 337 338 339 340 341 342 343 344 345
  matmul_qkv_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_qkv =
      pattern->NewNode(transpose2_qkv_repr())->assert_is_op("transpose2");
  auto* transpose2_qkv_out_var = pattern->NewNode(transpose2_qkv_out_repr())
                                     ->assert_is_op_output("transpose2");
  transpose2_qkv_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_qkv =
      pattern->NewNode(reshape2_qkv_repr())->assert_is_op("reshape2");
  auto* reshape2_qkv_out_var = pattern->NewNode(reshape2_qkv_out_repr())
                                   ->assert_is_op_output("reshape2");
W
Wilber 已提交
346
  reshape2_qkv_out_var->assert_is_ops_input(mul_ops);
347 348

  // Second path to matmul
W
Wilber 已提交
349
  auto* mul1 = pattern->NewNode(mul1_repr())->assert_is_ops(mul_ops);
350 351
  auto* mul1_w_var = pattern->NewNode(mul1_w_repr())
                         ->AsInput()
W
Wilber 已提交
352
                         ->assert_is_ops_input(mul_ops, "Y");
353
  auto* mul1_out_var =
W
Wilber 已提交
354
      pattern->NewNode(mul1_out_repr())->assert_is_ops_output(mul_ops);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

  decltype(mul1) eltadd1;
  decltype(mul1) eltadd1_b_var;
  decltype(mul1) eltadd1_out_var;

  mul1_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd1 = pattern->NewNode(eltadd1_repr())->assert_is_op("elementwise_add");
  eltadd1_b_var = pattern->NewNode(eltadd1_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd1_out_var = pattern->NewNode(eltadd1_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd1_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_1 =
      pattern->NewNode(reshape2_1_repr())->assert_is_op("reshape2");

  auto* reshape2_1_out_var =
      pattern->NewNode(reshape2_1_out_repr())->assert_is_op_output("reshape2");
  reshape2_1_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_1 =
      pattern->NewNode(transpose2_1_repr())->assert_is_op("transpose2");
  auto* transpose2_1_out_var = pattern->NewNode(transpose2_1_out_repr())
                                   ->assert_is_op_output("transpose2");
W
Wilber 已提交
381 382
  transpose2_1_out_var->AsIntermediate()->assert_is_ops_input(
      matmul_ops);  // link to matmul qk
383 384

  // Third path to matmul
W
Wilber 已提交
385
  auto* mul2 = pattern->NewNode(mul2_repr())->assert_is_ops(mul_ops);
386 387
  auto* mul2_w_var = pattern->NewNode(mul2_w_repr())
                         ->AsInput()
W
Wilber 已提交
388
                         ->assert_is_ops_input(mul_ops, "Y");
389
  auto* mul2_out_var =
W
Wilber 已提交
390
      pattern->NewNode(mul2_out_repr())->assert_is_ops_output(mul_ops);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

  decltype(mul2) eltadd2;
  decltype(mul2) eltadd2_b_var;
  decltype(mul2) eltadd2_out_var;

  mul2_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd2 = pattern->NewNode(eltadd2_repr())->assert_is_op("elementwise_add");
  eltadd2_b_var = pattern->NewNode(eltadd2_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd2_out_var = pattern->NewNode(eltadd2_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd2_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_2 =
      pattern->NewNode(reshape2_2_repr())->assert_is_op("reshape2");

  auto* reshape2_2_out_var =
      pattern->NewNode(reshape2_2_out_repr())->assert_is_op_output("reshape2");
  reshape2_2_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_2 =
      pattern->NewNode(transpose2_2_repr())->assert_is_op("transpose2");
  auto* transpose2_2_out_var = pattern->NewNode(transpose2_2_out_repr())
                                   ->assert_is_op_output("transpose2");
W
Wilber 已提交
417 418
  transpose2_2_out_var->AsIntermediate()->assert_is_ops_input(
      matmul_ops);  // link to matmul qkv
419 420

  // Q path
421
  mul0->LinksFrom({input0, mul0_w_var}).LinksTo({mul0_out_var});
422 423 424 425 426 427
  eltadd0->LinksFrom({mul0_out_var, eltadd0_b_var}).LinksTo({eltadd0_out_var});

  reshape2_0->LinksFrom({eltadd0_out_var}).LinksTo({reshape2_0_out_var});
  transpose2_0->LinksFrom({reshape2_0_out_var}).LinksTo({transpose2_0_out_var});
  scale->LinksFrom({transpose2_0_out_var}).LinksTo({scale_out_var});
  // K path
428
  mul1->LinksFrom({input0, mul1_w_var}).LinksTo({mul1_out_var});
429 430 431 432 433 434 435 436 437 438
  eltadd1->LinksFrom({mul1_out_var, eltadd1_b_var}).LinksTo({eltadd1_out_var});
  reshape2_1->LinksFrom({eltadd1_out_var}).LinksTo({reshape2_1_out_var});
  transpose2_1->LinksFrom({reshape2_1_out_var}).LinksTo({transpose2_1_out_var});
  // compute q*k
  matmul_qk->LinksFrom({scale_out_var, transpose2_1_out_var})
      .LinksTo({matmul_qk_out_var});
  eltadd_qk->LinksFrom({matmul_qk_out_var, eltadd_qk_b_var})
      .LinksTo({eltadd_qk_out_var});
  softmax_qk->LinksFrom({eltadd_qk_out_var}).LinksTo({softmax_qk_out_var});
  // V  path
439
  mul2->LinksFrom({input0, mul2_w_var}).LinksTo({mul2_out_var});
440 441 442 443 444 445 446 447 448 449 450 451 452 453
  eltadd2->LinksFrom({mul2_out_var, eltadd2_b_var}).LinksTo({eltadd2_out_var});
  reshape2_2->LinksFrom({eltadd2_out_var}).LinksTo({reshape2_2_out_var});
  transpose2_2->LinksFrom({reshape2_2_out_var}).LinksTo({transpose2_2_out_var});
  // compute q*k*v
  matmul_qkv->LinksFrom({softmax_qk_out_var, transpose2_2_out_var})
      .LinksTo({matmul_qkv_out_var});
  transpose2_qkv->LinksFrom({matmul_qkv_out_var})
      .LinksTo({transpose2_qkv_out_var});
  reshape2_qkv->LinksFrom({transpose2_qkv_out_var})
      .LinksTo({reshape2_qkv_out_var});

  return transpose2_2_out_var;
}

454
PDNode* MultiHeadMatmulV3Pattern::operator()() {
455 456
  // Add mul op to support huggingface onnx model convertsion by x2paddle
  std::unordered_set<std::string> matmul_ops{"mul", "matmul", "matmul_v2"};
457
  auto* input0 = pattern->NewNode(input0_repr());
458
  input0->assert_is_ops_input(matmul_ops);
459 460

  // First path with scale
461
  auto* mul0 = pattern->NewNode(mul0_repr())->assert_is_ops(matmul_ops);
462 463
  auto* mul0_w_var = pattern->NewNode(mul0_w_repr())
                         ->AsInput()
464
                         ->assert_is_ops_input(matmul_ops, "Y");
465
  auto* mul0_out_var =
466
      pattern->NewNode(mul0_out_repr())->assert_is_ops_output(matmul_ops);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

  decltype(mul0) eltadd0;
  decltype(mul0) eltadd0_b_var;
  decltype(mul0) eltadd0_out_var;

  mul0_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  eltadd0 = pattern->NewNode(eltadd0_repr())->assert_is_op("elementwise_add");
  eltadd0_b_var = pattern->NewNode(eltadd0_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd0_out_var = pattern->NewNode(eltadd0_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd0_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_0 =
      pattern->NewNode(reshape2_0_repr())->assert_is_op("reshape2");

  auto* reshape2_0_out_var =
      pattern->NewNode(reshape2_0_out_repr())->assert_is_op_output("reshape2");
  reshape2_0_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_0 =
      pattern->NewNode(transpose2_0_repr())->assert_is_op("transpose2");
  auto* transpose2_0_out_var = pattern->NewNode(transpose2_0_out_repr())
                                   ->assert_is_op_output("transpose2");
494
  transpose2_0_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops, "X");
495

496 497
  auto* matmul_qk =
      pattern->NewNode(matmul_qk_repr())->assert_is_ops(matmul_ops);
498
  auto* matmul_qk_out_var =
499
      pattern->NewNode(matmul_qk_out_repr())->assert_is_ops_output(matmul_ops);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
  matmul_qk_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto* eltadd_qk =
      pattern->NewNode(eltadd_qk_repr())->assert_is_op("elementwise_add");
  auto* eltadd_qk_b_var = pattern->NewNode(eltadd_qk_b_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add", "Y");
  auto* eltadd_qk_out_var = pattern->NewNode(eltadd_qk_out_repr())
                                ->assert_is_op_output("elementwise_add");
  eltadd_qk_out_var->AsIntermediate()->assert_is_op_input("softmax");

  auto* softmax_qk =
      pattern->NewNode(softmax_qk_repr())->assert_is_op("softmax");
  auto* softmax_qk_out_var =
      pattern->NewNode(softmax_qk_out_repr())->assert_is_op_output("softmax");
  softmax_qk_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops);

  auto* matmul_qkv =
      pattern->NewNode(matmul_qkv_repr())->assert_is_ops(matmul_ops);
  auto* matmul_qkv_out_var =
      pattern->NewNode(matmul_qkv_out_repr())->assert_is_ops_output(matmul_ops);
  matmul_qkv_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_qkv =
      pattern->NewNode(transpose2_qkv_repr())->assert_is_op("transpose2");
  auto* transpose2_qkv_out_var = pattern->NewNode(transpose2_qkv_out_repr())
                                     ->assert_is_op_output("transpose2");
  transpose2_qkv_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_qkv =
      pattern->NewNode(reshape2_qkv_repr())->assert_is_op("reshape2");
  auto* reshape2_qkv_out_var = pattern->NewNode(reshape2_qkv_out_repr())
                                   ->assert_is_op_output("reshape2");
533
  reshape2_qkv_out_var->assert_is_ops_input(matmul_ops);
534
  // Second path to matmul
535
  auto* mul1 = pattern->NewNode(mul1_repr())->assert_is_ops(matmul_ops);
536 537
  auto* mul1_w_var = pattern->NewNode(mul1_w_repr())
                         ->AsInput()
538
                         ->assert_is_ops_input(matmul_ops, "Y");
539
  auto* mul1_out_var =
540
      pattern->NewNode(mul1_out_repr())->assert_is_ops_output(matmul_ops);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

  decltype(mul1) eltadd1;
  decltype(mul1) eltadd1_b_var;
  decltype(mul1) eltadd1_out_var;

  mul1_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd1 = pattern->NewNode(eltadd1_repr())->assert_is_op("elementwise_add");
  eltadd1_b_var = pattern->NewNode(eltadd1_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd1_out_var = pattern->NewNode(eltadd1_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd1_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_1 =
      pattern->NewNode(reshape2_1_repr())->assert_is_op("reshape2");

  auto* reshape2_1_out_var =
      pattern->NewNode(reshape2_1_out_repr())->assert_is_op_output("reshape2");
  reshape2_1_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_1 =
      pattern->NewNode(transpose2_1_repr())->assert_is_op("transpose2");
  auto* transpose2_1_out_var = pattern->NewNode(transpose2_1_out_repr())
                                   ->assert_is_op_output("transpose2");
567 568
  transpose2_1_out_var->AsIntermediate()->assert_is_ops_input(
      matmul_ops, "Y");  // link to matmul qk
569 570

  // Third path to matmul
571
  auto* mul2 = pattern->NewNode(mul2_repr())->assert_is_ops(matmul_ops);
572 573
  auto* mul2_w_var = pattern->NewNode(mul2_w_repr())
                         ->AsInput()
574
                         ->assert_is_ops_input(matmul_ops, "Y");
575
  auto* mul2_out_var =
576
      pattern->NewNode(mul2_out_repr())->assert_is_ops_output(matmul_ops);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

  decltype(mul2) eltadd2;
  decltype(mul2) eltadd2_b_var;
  decltype(mul2) eltadd2_out_var;

  mul2_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd2 = pattern->NewNode(eltadd2_repr())->assert_is_op("elementwise_add");
  eltadd2_b_var = pattern->NewNode(eltadd2_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd2_out_var = pattern->NewNode(eltadd2_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd2_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_2 =
      pattern->NewNode(reshape2_2_repr())->assert_is_op("reshape2");

  auto* reshape2_2_out_var =
      pattern->NewNode(reshape2_2_out_repr())->assert_is_op_output("reshape2");
  reshape2_2_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_2 =
      pattern->NewNode(transpose2_2_repr())->assert_is_op("transpose2");
  auto* transpose2_2_out_var = pattern->NewNode(transpose2_2_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_2_out_var->AsIntermediate()->assert_is_ops_input(
      matmul_ops);  // link to matmul qkv

  // Q path
  mul0->LinksFrom({input0, mul0_w_var}).LinksTo({mul0_out_var});
  eltadd0->LinksFrom({mul0_out_var, eltadd0_b_var}).LinksTo({eltadd0_out_var});

  reshape2_0->LinksFrom({eltadd0_out_var}).LinksTo({reshape2_0_out_var});
  transpose2_0->LinksFrom({reshape2_0_out_var}).LinksTo({transpose2_0_out_var});
  // K path
  mul1->LinksFrom({input0, mul1_w_var}).LinksTo({mul1_out_var});
  eltadd1->LinksFrom({mul1_out_var, eltadd1_b_var}).LinksTo({eltadd1_out_var});
  reshape2_1->LinksFrom({eltadd1_out_var}).LinksTo({reshape2_1_out_var});
  transpose2_1->LinksFrom({reshape2_1_out_var}).LinksTo({transpose2_1_out_var});
  // compute q*k
  matmul_qk->LinksFrom({transpose2_0_out_var, transpose2_1_out_var})
      .LinksTo({matmul_qk_out_var});
  eltadd_qk->LinksFrom({matmul_qk_out_var, eltadd_qk_b_var})
      .LinksTo({eltadd_qk_out_var});
  softmax_qk->LinksFrom({eltadd_qk_out_var}).LinksTo({softmax_qk_out_var});
  // V  path
  mul2->LinksFrom({input0, mul2_w_var}).LinksTo({mul2_out_var});
  eltadd2->LinksFrom({mul2_out_var, eltadd2_b_var}).LinksTo({eltadd2_out_var});
  reshape2_2->LinksFrom({eltadd2_out_var}).LinksTo({reshape2_2_out_var});
  transpose2_2->LinksFrom({reshape2_2_out_var}).LinksTo({transpose2_2_out_var});
  // compute q*k*v
  matmul_qkv->LinksFrom({softmax_qk_out_var, transpose2_2_out_var})
      .LinksTo({matmul_qkv_out_var});
  transpose2_qkv->LinksFrom({matmul_qkv_out_var})
      .LinksTo({transpose2_qkv_out_var});
  reshape2_qkv->LinksFrom({transpose2_qkv_out_var})
      .LinksTo({reshape2_qkv_out_var});

  return transpose2_2_out_var;
}
}  // namespace patterns

W
Wilber 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
namespace {
template <typename T>
inline void QKVWeightsProcess(Tensor* wq_tensor,
                              Tensor* wk_tensor,
                              Tensor* wv_tensor,
                              Tensor* bq_tensor,
                              Tensor* bk_tensor,
                              Tensor* bv_tensor) {
  auto* wq_data = wq_tensor->mutable_data<T>(platform::CPUPlace());
  auto* wk_data = wk_tensor->mutable_data<T>(platform::CPUPlace());
  auto* wv_data = wv_tensor->mutable_data<T>(platform::CPUPlace());
  auto* bq_data = bq_tensor->mutable_data<T>(platform::CPUPlace());
  auto* bk_data = bk_tensor->mutable_data<T>(platform::CPUPlace());
  auto* bv_data = bv_tensor->mutable_data<T>(platform::CPUPlace());

  auto combined_w_dims =
      phi::make_ddim({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
  auto combined_bias_dims = phi::make_ddim({3, bq_tensor->dims()[0]});

  framework::LoDTensor tmp_combined_w_tensor;
  tmp_combined_w_tensor.Resize(combined_w_dims);
  auto* tmp_combined_w_data =
      tmp_combined_w_tensor.mutable_data<T>(platform::CPUPlace());

  std::vector<T*> w_vec = {wq_data, wk_data, wv_data};
  int dims_h = combined_w_dims[0], dims_w = combined_w_dims[2];
  // Combine the three fc weights together.
  for (int i = 0; i < dims_h; i++) {
    for (int j = 0; j < 3; j++) {
      for (int k = 0; k < dims_w; k++) {
        int out_index = i * (3 * dims_w) + j * dims_w + k;
        int in_index = i * dims_w + k;
        tmp_combined_w_data[out_index] = w_vec[j][in_index];
      }
    }
  }

  wq_tensor->Resize(combined_w_dims);
  auto* new_combined_w_data = wq_tensor->mutable_data<T>(platform::CPUPlace());
  memcpy(
      new_combined_w_data, tmp_combined_w_data, sizeof(T) * wq_tensor->numel());

  framework::LoDTensor tmp_combined_bias_tensor;
  tmp_combined_bias_tensor.Resize(combined_bias_dims);
  auto* tmp_combined_bias_data =
      tmp_combined_bias_tensor.mutable_data<T>(platform::CPUPlace());

  size_t bias_size = bq_tensor->numel();
  memcpy(tmp_combined_bias_data, bq_data, sizeof(T) * bias_size);
  memcpy(tmp_combined_bias_data + bias_size, bk_data, sizeof(T) * bias_size);
  memcpy(
      tmp_combined_bias_data + 2 * bias_size, bv_data, sizeof(T) * bias_size);

  bq_tensor->Resize(combined_bias_dims);
  auto* new_combined_bias_data =
      bq_tensor->mutable_data<T>(platform::CPUPlace());
  memcpy(new_combined_bias_data,
         tmp_combined_bias_data,
         sizeof(T) * bq_tensor->numel());
}
}  // namespace

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
void MultiHeadMatmulFusePass::ApplyImpl(Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);

  int fusion_count = patterns::BuildFusion(graph, name_scope_);
  AddStatis(fusion_count);
}

MultiHeadMatmulV2FusePass::MultiHeadMatmulV2FusePass() {
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddInput("Y")  // the shape shoule be (N*H, N*H)
      .IsTensor()
      .End()
      .AddOutput("Out")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(2)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      // in bias, shape is (B, S, N*H),
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      .AddInput("Y")
      // in bias, shape is (N*H)
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      // in bias, shape is (B, S, N*H)
      // in biasqk, shape is (B, H, S, S)
      .AddOutput("Out")
      .IsTensor()
      .End()
      // in bias, it equal to 2
      // in biasqk, it equal to -1 or 0
      .AddAttr("axis")
      .IsIntIn({2, -1, 0})
      .End();

  AddOpCompat(OpCompat("reshape2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Shape")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ShapeTensor")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
765
      .IsOptional()
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
      .IsTensor()
      .End()
      .AddAttr("shape")  // -->(B, S, H, N)  <--(B, S, N*H)
      .IsType<std::vector<int>>()
      .End();

  // -->: (B, S, H, N) -> (B, H, S, N)
  // <--: (B, H, S, N) -> (B, S, H, N)
  AddOpCompat(OpCompat("transpose2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
782
      .IsOptional()
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
      .IsTensor()
      .End()
      .AddAttr("axis")  // {0, 2, 1, 3}
      .IsType<std::vector<int>>()
      .End();

  AddOpCompat(OpCompat("scale"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("scale")
      .IsType<float>()  // copy to new op. so unconstrained.
      .End()
      .AddAttr("bias")
      .IsNumEQ(0.f)
      .End()
      .AddAttr("bias_after_scale")  // bias is 0, so unconstrained.
      .IsType<bool>()
      .End();

  // QK (B, H, S, N)*(B, H, S, N) -> (B, H, S, S)
  // QKV (B, H, S, S)*(B, H, S, N) -> (B, H, S, N)
  AddOpCompat(OpCompat("matmul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("alpha")
      .IsNumEQ(1.0f)
      .End()
      .AddAttr("transpose_X")
      .IsBoolEQ(false)
      .End()
      .AddAttr("transpose_Y")  // QK(true) QKV(false)
      .IsType<bool>()
      .End();

W
Wilber 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
  AddOpCompat(OpCompat("matmul_v2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("trans_x")
      .IsType<bool>()
      .End()
      .AddAttr("trans_y")
      .IsType<bool>()
      .End();

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
  AddOpCompat(OpCompat("softmax"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsIntIn({-1, 3})  // shape is (B, H, S, S), so axis is -1 or 3
      .End();
}

int MultiHeadMatmulV2FusePass::BuildFusionV2(Graph* graph,
                                             const std::string& name_scope,
                                             Scope* scope) const {
860 861 862 863
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Create pattern.
864
  patterns::MultiHeadMatmulPattern multihead_pattern(pattern, name_scope);
865

866
  multihead_pattern();
867
  // Create New OpDesc
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
  auto fuse_creater = [&](Node* input0,
                          Node* mul0,
                          Node* mul1,
                          Node* mul2,
                          Node* mul0_out,
                          Node* mul1_out,
                          Node* mul2_out,
                          Node* mul0_w,
                          Node* mul1_w,
                          Node* mul2_w,
                          Node* eltadd0_b,
                          Node* eltadd1_b,
                          Node* eltadd2_b,
                          Node* eltadd_qk_b,
                          Node* reshape2,
                          Node* reshape2_qkv_out,
                          Node* scale,
                          Node* scale_out,
                          Node* softmax_qk,
                          Node* eltadd0,
                          Node* eltadd1,
                          Node* eltadd2,
                          Node* matmul_qk,
                          Node* reshape2_qkv) {
R
Ruibiao Chen 已提交
892
    auto scale_attr = PADDLE_GET_CONST(float, scale->Op()->GetAttr("scale"));
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907

    // mul (B * S * Hidden) x (Hidden * 3 * N * H) = (B * S * 3 * N * H)
    // bias (B * S * 3 * N * H) + bias (3 * N * H)
    // Transpose (B * S * 3 * N * H) -> (3 * B * N * S * H)
    auto* wq_tensor = scope->FindVar(mul0_w->Name())->GetMutable<LoDTensor>();
    auto* wk_tensor = scope->FindVar(mul1_w->Name())->GetMutable<LoDTensor>();
    auto* wv_tensor = scope->FindVar(mul2_w->Name())->GetMutable<LoDTensor>();

    auto* bq_tensor =
        scope->FindVar(eltadd0_b->Name())->GetMutable<LoDTensor>();
    auto* bk_tensor =
        scope->FindVar(eltadd1_b->Name())->GetMutable<LoDTensor>();
    auto* bv_tensor =
        scope->FindVar(eltadd2_b->Name())->GetMutable<LoDTensor>();

W
Wilber 已提交
908 909 910 911 912 913 914 915 916 917 918
    if (wq_tensor->dtype() == phi::DataType::FLOAT32) {
      QKVWeightsProcess<float>(
          wq_tensor, wk_tensor, wv_tensor, bq_tensor, bk_tensor, bv_tensor);
    } else if (wq_tensor->dtype() == phi::DataType::FLOAT16) {
      QKVWeightsProcess<platform::float16>(
          wq_tensor, wk_tensor, wv_tensor, bq_tensor, bk_tensor, bv_tensor);
    } else {
      PADDLE_THROW(platform::errors::Unavailable(
          "multihead_matmul not supported weight dtype. we now only support "
          "fp32 and fp16."));
    }
919

920 921 922 923 924 925 926 927 928 929 930
    // reuse the mul0_w and eltadd_0_b nodes for the combined nodes.
    auto* combined_w_desc = mul0_w->Var();
    combined_w_desc->SetShape({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    combined_w_desc->SetPersistable(true);

    auto* combined_bias_desc = eltadd0_b->Var();
    combined_bias_desc->SetShape({3, bq_tensor->dims()[0]});
    combined_bias_desc->SetPersistable(true);

    scope->EraseVars({mul1_w->Name(), mul2_w->Name()});
    scope->EraseVars({eltadd1_b->Name(), eltadd2_b->Name()});
931 932 933

    auto reshape_desc = reshape2->Op();
    int head_number =
R
Ruibiao Chen 已提交
934 935
        PADDLE_GET_CONST(std::vector<int>, reshape_desc->GetAttr("shape"))
            .at(2);
936

937
    OpDesc multihead_op_desc(mul0->Op()->Block());
938 939
    multihead_op_desc.SetType("multihead_matmul");

940 941 942
    multihead_op_desc.SetInput("Input", {input0->Name()});
    multihead_op_desc.SetInput("W", {mul0_w->Name()});
    multihead_op_desc.SetInput("Bias", {eltadd0_b->Name()});
943 944 945 946 947 948
    multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()});

    multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()});
    multihead_op_desc.SetAttr("alpha", scale_attr);
    multihead_op_desc.SetAttr("head_number", head_number);

949
    auto* mul0_op_desc = mul0->Op();
950 951

    // all mul op has same input.
W
Wangzheee 已提交
952
    if (mul0_op_desc->HasAttr("Input_scale")) {
953
      multihead_op_desc.SetAttr("Input_scale",
954 955 956 957 958 959 960
                                mul0_op_desc->GetAttr("Input_scale"));
    }
    auto* add0_op_desc = eltadd0->Op();
    auto* add1_op_desc = eltadd1->Op();
    auto* add2_op_desc = eltadd2->Op();
    if (add0_op_desc->HasAttr("out_threshold")) {
      auto out_scale0 =
R
Ruibiao Chen 已提交
961
          PADDLE_GET_CONST(float, add0_op_desc->GetAttr("out_threshold"));
962
      auto out_scale1 =
R
Ruibiao Chen 已提交
963
          PADDLE_GET_CONST(float, add1_op_desc->GetAttr("out_threshold"));
964
      auto out_scale2 =
R
Ruibiao Chen 已提交
965
          PADDLE_GET_CONST(float, add2_op_desc->GetAttr("out_threshold"));
966 967 968
      auto out_scale_max = std::max(out_scale0, out_scale1);
      out_scale_max = std::max(out_scale_max, out_scale2);
      multihead_op_desc.SetAttr("fc_out_threshold", out_scale_max);
969 970
    }

971 972
    auto* softmax_qk_op_desc = softmax_qk->Op();
    auto* matmul_qk_op_desc = matmul_qk->Op();
973
    if (matmul_qk_op_desc->HasAttr("Input_scale")) {
974 975
      multihead_op_desc.SetAttr("qkv2context_plugin_int8", true);
      if (softmax_qk_op_desc->HasAttr("out_threshold")) {
R
Ruibiao Chen 已提交
976
        auto qkv_plugin_scale = PADDLE_GET_CONST(
977 978 979 980
            float, softmax_qk_op_desc->GetAttr("out_threshold"));
        multihead_op_desc.SetAttr("dp_probs", qkv_plugin_scale);
      }
    }
981 982 983 984
    if (reshape2_qkv->Op()->HasAttr("out_threshold")) {
      multihead_op_desc.SetAttr("out_threshold",
                                reshape2_qkv->Op()->GetAttr("out_threshold"));
    }
985 986
    auto* multihead = graph->CreateOpNode(&multihead_op_desc);

987 988 989
    IR_NODE_LINK_TO(input0, multihead);
    IR_NODE_LINK_TO(mul0_w, multihead);
    IR_NODE_LINK_TO(eltadd0_b, multihead);
990 991 992 993 994 995 996 997
    IR_NODE_LINK_TO(eltadd_qk_b, multihead);

    IR_NODE_LINK_TO(multihead, reshape2_qkv_out);
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
998 999 1000 1001 1002
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING)
          << "Op compat check in multihead_matmul_fuse_pass_v2 failed.";
      return;
    }
1003
    // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern);
1004
    GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern);
1005 1006 1007 1008 1009

    GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern);
1010 1011
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_0_out, reshape2_0_out, multihead_pattern);
1012
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern);
1013 1014
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_0_out, transpose2_0_out, multihead_pattern);
1015 1016 1017 1018 1019 1020 1021
    GET_IR_NODE_FROM_SUBGRAPH(scale, scale, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(scale_out, scale_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern);
1022 1023
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_1_out, reshape2_1_out, multihead_pattern);
1024
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern);
1025 1026
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_1_out, transpose2_1_out, multihead_pattern);
1027 1028 1029 1030 1031

    GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern);
1032 1033
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_2_out, reshape2_2_out, multihead_pattern);
1034
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern);
1035 1036
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_2_out, transpose2_2_out, multihead_pattern);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

    // nodes need be removed
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern);
1059 1060
    GET_IR_NODE_FROM_SUBGRAPH(
        softmax_qk_out, softmax_qk_out, multihead_pattern);
1061 1062

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern);
1063 1064
    GET_IR_NODE_FROM_SUBGRAPH(
        matmul_qkv_out, matmul_qkv_out, multihead_pattern);
1065 1066

    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern);
1067 1068 1069 1070 1071 1072
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_qkv_out, reshape2_qkv_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv, transpose2_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv_out, transpose2_qkv_out, multihead_pattern);
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    // If weights or biases in qkv's fc are shared by multiple multihead_matmul
    // patterns, we do not support this kind of fusion, this pass will not take
    // effect.
    bool is_fc_params_shared =
        mul0_w->outputs.size() > 1 || mul1_w->outputs.size() > 1 ||
        mul2_w->outputs.size() > 1 || eltadd0_b->outputs.size() > 1 ||
        eltadd1_b->outputs.size() > 1 || eltadd2_b->outputs.size() > 1;
    if (is_fc_params_shared) {
      return;
    }
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    fuse_creater(input0,
                 mul0,
                 mul1,
                 mul2,
                 mul0_out,
                 mul1_out,
                 mul2_out,
                 mul0_w,
                 mul1_w,
                 mul2_w,
                 eltadd0_b,
                 eltadd1_b,
                 eltadd2_b,
                 eltadd_qk_b,
                 reshape2_0,
                 reshape2_qkv_out,
                 scale,
                 scale_out,
                 softmax_qk,
                 eltadd0,
                 eltadd1,
                 eltadd2,
                 matmul_qk,
                 reshape2_qkv);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

    std::unordered_set<const Node*> marked_nodes({eltadd0,
                                                  eltadd1,
                                                  eltadd2,
                                                  eltadd1_b,
                                                  eltadd2_b,
                                                  eltadd0_out,
                                                  eltadd1_out,
                                                  eltadd2_out,
                                                  reshape2_0,
                                                  reshape2_1,
                                                  reshape2_2,
                                                  reshape2_0_out,
                                                  reshape2_1_out,
                                                  reshape2_2_out,
                                                  transpose2_0,
                                                  transpose2_1,
                                                  transpose2_2,
                                                  transpose2_0_out,
                                                  transpose2_1_out,
                                                  transpose2_2_out,
                                                  matmul_qk,
                                                  matmul_qk_out,
                                                  eltadd_qk,
                                                  eltadd_qk_out,
                                                  softmax_qk,
                                                  softmax_qk_out,
                                                  transpose2_qkv,
                                                  transpose2_qkv_out,
                                                  matmul_qkv,
                                                  matmul_qkv_out,
                                                  mul0,
                                                  mul1,
                                                  mul2,
                                                  mul0_out,
                                                  mul1_out,
                                                  mul2_out,
                                                  mul1_w,
                                                  mul2_w,
                                                  reshape2_qkv,
                                                  scale});
    // Remove unneeded nodes.
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);

  return fusion_count;
}

1158 1159 1160 1161 1162 1163 1164
void MultiHeadMatmulV2FusePass::ApplyImpl(Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
  auto* scope = param_scope();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::Fatal(
          "During the multiheadMatmul pass, The scope should not be null."));
1165

1166 1167 1168 1169 1170 1171
  int fusion_count = BuildFusionV2(graph, name_scope_, scope);
  if (fusion_count > 0) {
    graph->Set(kMultiheadMatmulPass, new bool(true));
  }
  AddStatis(fusion_count);
}
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
MultiHeadMatmulV3FusePass::MultiHeadMatmulV3FusePass() {
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddInput("Y")  // the shape shoule be (N*H, N*H)
      .IsTensor()
      .End()
      .AddOutput("Out")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(2)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      // in bias, shape is (B, S, N*H),
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      .AddInput("Y")
      // in bias, shape is (N*H)
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      // in bias, shape is (B, S, N*H)
      // in biasqk, shape is (B, H, S, S)
      .AddOutput("Out")
      .IsTensor()
      .End()
      // in bias, it equal to 2
      // in biasqk, it equal to -1 or 0
      .AddAttr("axis")
      .IsIntIn({2, -1, 0})
      .End();

  AddOpCompat(OpCompat("reshape2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Shape")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ShapeTensor")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
1229
      .IsOptional()
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
      .IsTensor()
      .End()
      .AddAttr("shape")  // -->(B, S, H, N)  <--(B, S, N*H)
      .IsType<std::vector<int>>()
      .End();

  // -->: (B, S, H, N) -> (B, H, S, N)
  // <--: (B, H, S, N) -> (B, S, H, N)
  AddOpCompat(OpCompat("transpose2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
1246
      .IsOptional()
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
      .IsTensor()
      .End()
      .AddAttr("axis")  // {0, 2, 1, 3}
      .IsType<std::vector<int>>()
      .End();

  // QK (B, H, S, N)*(B, H, S, N) -> (B, H, S, S)
  // QKV (B, H, S, S)*(B, H, S, N) -> (B, H, S, N)
  AddOpCompat(OpCompat("matmul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("alpha")
      .IsType<float>()  // QK(anyvalue, will copy to new op) QKV(1.0)
      .End()
      .AddAttr("transpose_X")
      .IsBoolEQ(false)
      .End()
      .AddAttr("transpose_Y")  // QK(true) QKV(false)
      .IsType<bool>()
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
      .End();

  AddOpCompat(OpCompat("matmul_v2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("trans_x")
      .IsBoolEQ(false)
      .End()
      .AddAttr("trans_y")  // QK(true) QKV(false)
      .IsType<bool>()
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
      .End();

  AddOpCompat(OpCompat("softmax"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsIntIn({-1, 3})  // shape is (B, H, S, S), so axis is -1 or 3
      .End();
1302 1303
}

1304 1305 1306
int MultiHeadMatmulV3FusePass::BuildFusionV3(Graph* graph,
                                             const std::string& name_scope,
                                             Scope* scope) const {
1307 1308 1309 1310
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Create pattern.
1311
  patterns::MultiHeadMatmulV3Pattern multihead_pattern(pattern, name_scope);
1312 1313 1314

  multihead_pattern();
  // Create New OpDesc
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
  auto fuse_creater = [&](Node* input0,
                          Node* mul0,
                          Node* mul1,
                          Node* mul2,
                          Node* mul0_out,
                          Node* mul1_out,
                          Node* mul2_out,
                          Node* mul0_w,
                          Node* mul1_w,
                          Node* mul2_w,
                          Node* eltadd0_b,
                          Node* eltadd1_b,
                          Node* eltadd2_b,
                          Node* eltadd_qk_b,
                          Node* reshape2,
                          Node* reshape2_qkv_out,
                          Node* matmul_qk) {
R
Ruibiao Chen 已提交
1332 1333
    auto scale_attr =
        PADDLE_GET_CONST(float, matmul_qk->Op()->GetAttr("alpha"));
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

    // mul (B * S * Hidden) x (Hidden * 3 * N * H) = (B * S * 3 * N * H)
    // bias (B * S * 3 * N * H) + bias (3 * N * H)
    // Transpose (B * S * 3 * N * H) -> (3 * B * N * S * H)
    auto* wq_tensor = scope->FindVar(mul0_w->Name())->GetMutable<LoDTensor>();
    auto* wk_tensor = scope->FindVar(mul1_w->Name())->GetMutable<LoDTensor>();
    auto* wv_tensor = scope->FindVar(mul2_w->Name())->GetMutable<LoDTensor>();

    auto* bq_tensor =
        scope->FindVar(eltadd0_b->Name())->GetMutable<LoDTensor>();
    auto* bk_tensor =
        scope->FindVar(eltadd1_b->Name())->GetMutable<LoDTensor>();
    auto* bv_tensor =
        scope->FindVar(eltadd2_b->Name())->GetMutable<LoDTensor>();

    auto* wq_data = wq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wk_data = wk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wv_data = wv_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bq_data = bq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bk_data = bk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bv_data = bv_tensor->mutable_data<float>(platform::CPUPlace());

    auto combined_w_dims =
1357 1358
        phi::make_ddim({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    auto combined_bias_dims = phi::make_ddim({3, bq_tensor->dims()[0]});
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

    // reuse the mul0_w and eltadd_0_b nodes for the combined nodes.
    auto* combined_w_desc = mul0_w->Var();
    combined_w_desc->SetShape({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    combined_w_desc->SetPersistable(true);

    auto* combined_bias_desc = eltadd0_b->Var();
    combined_bias_desc->SetShape({3, bq_tensor->dims()[0]});
    combined_bias_desc->SetPersistable(true);

    framework::LoDTensor tmp_combined_w_tensor;
    tmp_combined_w_tensor.Resize(combined_w_dims);
    auto* tmp_combined_w_data =
        tmp_combined_w_tensor.mutable_data<float>(platform::CPUPlace());

    std::vector<float*> w_vec = {wq_data, wk_data, wv_data};
    int dims_h = combined_w_dims[0], dims_w = combined_w_dims[2];
    // Combine the three fc weights together.
    for (int i = 0; i < dims_h; i++) {
      for (int j = 0; j < 3; j++) {
        for (int k = 0; k < dims_w; k++) {
          int out_index = i * (3 * dims_w) + j * dims_w + k;
          int in_index = i * dims_w + k;
          tmp_combined_w_data[out_index] = w_vec[j][in_index];
        }
      }
    }

    wq_tensor->Resize(combined_w_dims);
    auto* new_combined_w_data =
        wq_tensor->mutable_data<float>(platform::CPUPlace());
1390 1391
    memcpy(new_combined_w_data,
           tmp_combined_w_data,
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
           sizeof(float) * wq_tensor->numel());

    scope->EraseVars({mul1_w->Name(), mul2_w->Name()});

    framework::LoDTensor tmp_combined_bias_tensor;
    tmp_combined_bias_tensor.Resize(combined_bias_dims);
    auto* tmp_combined_bias_data =
        tmp_combined_bias_tensor.mutable_data<float>(platform::CPUPlace());

    size_t bias_size = bq_tensor->numel();
    memcpy(tmp_combined_bias_data, bq_data, sizeof(float) * bias_size);
1403 1404 1405 1406
    memcpy(
        tmp_combined_bias_data + bias_size, bk_data, sizeof(float) * bias_size);
    memcpy(tmp_combined_bias_data + 2 * bias_size,
           bv_data,
1407 1408 1409 1410 1411
           sizeof(float) * bias_size);

    bq_tensor->Resize(combined_bias_dims);
    auto* new_combined_bias_data =
        bq_tensor->mutable_data<float>(platform::CPUPlace());
1412 1413
    memcpy(new_combined_bias_data,
           tmp_combined_bias_data,
1414 1415 1416 1417 1418 1419
           sizeof(float) * bq_tensor->numel());

    scope->EraseVars({eltadd1_b->Name(), eltadd2_b->Name()});

    auto reshape_desc = reshape2->Op();
    int head_number =
R
Ruibiao Chen 已提交
1420 1421
        PADDLE_GET_CONST(std::vector<int>, reshape_desc->GetAttr("shape"))
            .at(2);
1422

1423
    OpDesc multihead_op_desc(mul0->Op()->Block());
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    multihead_op_desc.SetType("multihead_matmul");

    multihead_op_desc.SetInput("Input", {input0->Name()});
    multihead_op_desc.SetInput("W", {mul0_w->Name()});
    multihead_op_desc.SetInput("Bias", {eltadd0_b->Name()});
    multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()});

    multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()});
    multihead_op_desc.SetAttr("alpha", scale_attr);
    multihead_op_desc.SetAttr("head_number", head_number);

    auto* multihead = graph->CreateOpNode(&multihead_op_desc);

    IR_NODE_LINK_TO(input0, multihead);
    IR_NODE_LINK_TO(mul0_w, multihead);
    IR_NODE_LINK_TO(eltadd0_b, multihead);
    IR_NODE_LINK_TO(eltadd_qk_b, multihead);

    IR_NODE_LINK_TO(multihead, reshape2_qkv_out);
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern);
1455 1456
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_0_out, reshape2_0_out, multihead_pattern);
1457
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern);
1458 1459
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_0_out, transpose2_0_out, multihead_pattern);
1460 1461 1462 1463 1464

    GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern);
1465 1466
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_1_out, reshape2_1_out, multihead_pattern);
1467
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern);
1468 1469
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_1_out, transpose2_1_out, multihead_pattern);
1470 1471 1472 1473 1474

    GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern);
1475 1476
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_2_out, reshape2_2_out, multihead_pattern);
1477
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern);
1478 1479
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_2_out, transpose2_2_out, multihead_pattern);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

    // nodes need be removed
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern);
1502 1503
    GET_IR_NODE_FROM_SUBGRAPH(
        softmax_qk_out, softmax_qk_out, multihead_pattern);
1504 1505

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern);
1506 1507
    GET_IR_NODE_FROM_SUBGRAPH(
        matmul_qkv_out, matmul_qkv_out, multihead_pattern);
1508 1509

    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern);
1510 1511 1512 1513 1514 1515
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_qkv_out, reshape2_qkv_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv, transpose2_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv_out, transpose2_qkv_out, multihead_pattern);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

    // If weights or biases in qkv's fc are shared by multiple multihead_matmul
    // patterns, we do not support this kind of fusion, this pass will not take
    // effect.
    bool is_fc_params_shared =
        mul0_w->outputs.size() > 1 || mul1_w->outputs.size() > 1 ||
        mul2_w->outputs.size() > 1 || eltadd0_b->outputs.size() > 1 ||
        eltadd1_b->outputs.size() > 1 || eltadd2_b->outputs.size() > 1;
    if (is_fc_params_shared) {
      return;
    }
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    fuse_creater(input0,
                 mul0,
                 mul1,
                 mul2,
                 mul0_out,
                 mul1_out,
                 mul2_out,
                 mul0_w,
                 mul1_w,
                 mul2_w,
                 eltadd0_b,
                 eltadd1_b,
                 eltadd2_b,
                 eltadd_qk_b,
                 reshape2_0,
                 reshape2_qkv_out,
                 matmul_qk);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

    std::unordered_set<const Node*> marked_nodes({eltadd0,
                                                  eltadd1,
                                                  eltadd2,
                                                  eltadd1_b,
                                                  eltadd2_b,
                                                  eltadd0_out,
                                                  eltadd1_out,
                                                  eltadd2_out,
                                                  reshape2_0,
                                                  reshape2_1,
                                                  reshape2_2,
                                                  reshape2_0_out,
                                                  reshape2_1_out,
                                                  reshape2_2_out,
                                                  transpose2_0,
                                                  transpose2_1,
                                                  transpose2_2,
                                                  transpose2_0_out,
                                                  transpose2_1_out,
                                                  transpose2_2_out,
                                                  matmul_qk,
                                                  matmul_qk_out,
                                                  eltadd_qk,
                                                  eltadd_qk_out,
                                                  softmax_qk,
                                                  softmax_qk_out,
                                                  transpose2_qkv,
                                                  transpose2_qkv_out,
                                                  matmul_qkv,
                                                  matmul_qkv_out,
                                                  mul0,
                                                  mul1,
                                                  mul2,
                                                  mul0_out,
                                                  mul1_out,
                                                  mul2_out,
                                                  mul1_w,
                                                  mul2_w,
                                                  reshape2_qkv});
    // Remove unneeded nodes.
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);

  return fusion_count;
}

void MultiHeadMatmulV3FusePass::ApplyImpl(Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
  auto* scope = param_scope();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::Fatal(
          "During the multiheadMatmul pass, The scope should not be null."));

1601
  int fusion_count = BuildFusionV3(graph, name_scope_, scope);
1602 1603 1604 1605 1606 1607
  if (fusion_count > 0) {
    graph->Set(kMultiheadMatmulPass, new bool(true));
  }
  AddStatis(fusion_count);
}

1608 1609 1610 1611 1612 1613
}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(multihead_matmul_fuse_pass,
              paddle::framework::ir::MultiHeadMatmulFusePass);
1614 1615 1616

REGISTER_PASS(multihead_matmul_fuse_pass_v2,
              paddle::framework::ir::MultiHeadMatmulV2FusePass);
1617 1618
REGISTER_PASS(multihead_matmul_fuse_pass_v3,
              paddle::framework::ir::MultiHeadMatmulV3FusePass);
1619 1620 1621 1622
REGISTER_PASS_CAPABILITY(multihead_matmul_fuse_pass_v2)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
1623
            .LE("elementwise_add", 1)
1624 1625 1626
            .EQ("reshape2", 0)
            .EQ("transpose2", 0)
            .EQ("scale", 0)
1627
            .LE("matmul", 1)
1628
            .EQ("softmax", 0));
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
REGISTER_PASS_CAPABILITY(multihead_matmul_fuse_pass_v3)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("elementwise_add", 1)
            .EQ("reshape2", 0)
            .EQ("transpose2", 0)
            .EQ("scale", 0)
            .LE("matmul", 1)
            .EQ("matmul_v2", 0)
            .EQ("softmax", 0));