multihead_matmul_fuse_pass.cc 61.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/multihead_matmul_fuse_pass.h"
W
wanghuancoder 已提交
16

17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/lod_tensor.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23 24 25 26

namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

namespace paddle {
namespace framework {
namespace ir {
namespace patterns {

static void ReplaceOutputVar(Node* op, Node* old_var, Node* new_var) {
  if (op->IsOp() && op->Op()) {
    new_var->inputs.push_back(op);
    for (size_t i = 0; i < op->outputs.size(); ++i) {
      if (op->outputs[i] == old_var) {
        op->outputs[i] = new_var;
        op->Op()->RenameOutput(old_var->Name(), new_var->Name());
      }
    }
  }
}

static int BuildFusion(Graph* graph, const std::string& name_scope) {
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Create pattern.
  MultiHeadMatmulPattern multihead_pattern(pattern, name_scope);

52
  multihead_pattern();
53
  // Create New OpDesc
54 55 56 57 58 59 60 61 62 63 64 65 66 67
  auto fuse_creater = [&](Node* input0,
                          Node* mul0,
                          Node* mul1,
                          Node* mul2,
                          Node* mul0_out,
                          Node* mul1_out,
                          Node* mul2_out,
                          Node* eltadd0_b,
                          Node* eltadd1_b,
                          Node* eltadd2_b,
                          Node* eltadd_qk_b,
                          Node* reshape2,
                          Node* reshape2_qkv_out,
                          Node* scale,
68
                          Node* scale_out) {
R
Ruibiao Chen 已提交
69 70
    auto scale_attr = PADDLE_GET_CONST(float, scale->Op()->GetAttr("scale"));
    // auto scale_bias = PADDLE_GET_CONST(float, scale->Op()->GetAttr("bias"));
71
    // bool after_scale =
R
Ruibiao Chen 已提交
72
    //    PADDLE_GET_CONST(bool, scale->Op()->GetAttr("bias_after_scale"));
73 74

    // create multihead
75
    OpDesc multihead_op_desc(mul0->Op()->Block());
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    // create tmp tensor
    VarDesc k_var_desc(*mul1_out->Var());
    k_var_desc.SetName("K" + mul1_out->Name());
    auto* k_var_node = graph->CreateVarNode(&k_var_desc);

    VarDesc q_var_desc(*mul0_out->Var());
    q_var_desc.SetName("Q" + mul0_out->Name());
    auto* q_var_node = graph->CreateVarNode(&q_var_desc);

    VarDesc v_var_desc(*mul2_out->Var());
    v_var_desc.SetName("V" + mul2_out->Name());
    auto* v_var_node = graph->CreateVarNode(&v_var_desc);

    auto reshape_desc = reshape2->Op();
    int head_number =
R
Ruibiao Chen 已提交
92 93
        PADDLE_GET_CONST(std::vector<int>, reshape_desc->GetAttr("shape"))
            .at(2);
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    ReplaceOutputVar(mul0, mul0_out, q_var_node);
    ReplaceOutputVar(mul1, mul1_out, k_var_node);
    ReplaceOutputVar(mul2, mul2_out, v_var_node);

    multihead_op_desc.SetType("multihead_matmul");
    multihead_op_desc.SetInput("Q", {q_var_node->Name()});
    multihead_op_desc.SetInput("K", {k_var_node->Name()});
    multihead_op_desc.SetInput("V", {v_var_node->Name()});

    multihead_op_desc.SetInput("BiasQ", {eltadd0_b->Name()});
    multihead_op_desc.SetInput("BiasK", {eltadd1_b->Name()});
    multihead_op_desc.SetInput("BiasV", {eltadd2_b->Name()});
    multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()});

    multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()});
    multihead_op_desc.SetAttr("alpha", scale_attr);
    multihead_op_desc.SetAttr("head_number", head_number);

    auto* multihead = graph->CreateOpNode(&multihead_op_desc);
    IR_NODE_LINK_TO(q_var_node, multihead);
    IR_NODE_LINK_TO(k_var_node, multihead);
    IR_NODE_LINK_TO(v_var_node, multihead);

    IR_NODE_LINK_TO(eltadd0_b, multihead);
    IR_NODE_LINK_TO(eltadd1_b, multihead);
    IR_NODE_LINK_TO(eltadd2_b, multihead);
    IR_NODE_LINK_TO(eltadd_qk_b, multihead);

    IR_NODE_LINK_TO(multihead, reshape2_qkv_out);
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern);
130
    GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern);
131 132 133 134 135

    GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern);
136 137
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_0_out, reshape2_0_out, multihead_pattern);
138
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern);
139 140
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_0_out, transpose2_0_out, multihead_pattern);
141 142 143 144 145 146 147
    GET_IR_NODE_FROM_SUBGRAPH(scale, scale, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(scale_out, scale_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern);
148 149
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_1_out, reshape2_1_out, multihead_pattern);
150
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern);
151 152
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_1_out, transpose2_1_out, multihead_pattern);
153 154 155 156 157

    GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern);
158 159
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_2_out, reshape2_2_out, multihead_pattern);
160
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern);
161 162
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_2_out, transpose2_2_out, multihead_pattern);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

    // nodes need be removed
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern);
185 186
    GET_IR_NODE_FROM_SUBGRAPH(
        softmax_qk_out, softmax_qk_out, multihead_pattern);
187 188

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern);
189 190
    GET_IR_NODE_FROM_SUBGRAPH(
        matmul_qkv_out, matmul_qkv_out, multihead_pattern);
191 192

    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_qkv_out, reshape2_qkv_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv, transpose2_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv_out, transpose2_qkv_out, multihead_pattern);

    fuse_creater(input0,
                 mul0,
                 mul1,
                 mul2,
                 mul0_out,
                 mul1_out,
                 mul2_out,
                 eltadd0_b,
                 eltadd1_b,
                 eltadd2_b,
                 eltadd_qk_b,
                 reshape2_0,
                 reshape2_qkv_out,
                 scale,
                 scale_out);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

    std::unordered_set<const Node*> marked_nodes(
        {eltadd0,
         eltadd1,
         eltadd2,
         eltadd0_out,
         eltadd1_out,
         eltadd2_out,
         reshape2_0,
         reshape2_1,
         reshape2_2,
         reshape2_0_out,
         reshape2_1_out,
         reshape2_2_out,
         transpose2_0,
         transpose2_1,
         transpose2_2,
         transpose2_0_out,
         transpose2_1_out,
         transpose2_2_out,
         matmul_qk,
         matmul_qk_out,
         eltadd_qk,
         eltadd_qk_out,
         softmax_qk,
         softmax_qk_out,  // dropout_qk, dropout_qk_out,
         transpose2_qkv,
         transpose2_qkv_out,
         matmul_qkv,
         matmul_qkv_out,
         mul0_out,
         mul1_out,
         mul2_out,
         reshape2_qkv,
         scale});
    // Remove unneeded nodes.
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);

  return fusion_count;
}

259 260 261
PDNode* MultiHeadMatmulPattern::operator()() {
  auto* input0 = pattern->NewNode(input0_repr());
  input0->assert_is_op_input("mul");
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

  // First path with scale
  auto* mul0 = pattern->NewNode(mul0_repr())->assert_is_op("mul");
  auto* mul0_w_var = pattern->NewNode(mul0_w_repr())
                         ->AsInput()
                         ->assert_is_op_input("mul", "Y");
  auto* mul0_out_var =
      pattern->NewNode(mul0_out_repr())->assert_is_op_output("mul");

  decltype(mul0) eltadd0;
  decltype(mul0) eltadd0_b_var;
  decltype(mul0) eltadd0_out_var;

  mul0_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  eltadd0 = pattern->NewNode(eltadd0_repr())->assert_is_op("elementwise_add");
  eltadd0_b_var = pattern->NewNode(eltadd0_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd0_out_var = pattern->NewNode(eltadd0_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd0_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_0 =
      pattern->NewNode(reshape2_0_repr())->assert_is_op("reshape2");

  auto* reshape2_0_out_var =
      pattern->NewNode(reshape2_0_out_repr())->assert_is_op_output("reshape2");
  reshape2_0_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_0 =
      pattern->NewNode(transpose2_0_repr())->assert_is_op("transpose2");
  auto* transpose2_0_out_var = pattern->NewNode(transpose2_0_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_0_out_var->AsIntermediate()->assert_is_op_input("scale");

  auto* scale = pattern->NewNode(scale_repr())->assert_is_op("scale");
  auto* scale_out_var =
      pattern->NewNode(scale_out_repr())->assert_is_op_output("scale");
  scale_out_var->AsIntermediate()->assert_is_op_input("matmul");

  auto* matmul_qk = pattern->NewNode(matmul_qk_repr())->assert_is_op("matmul");
  auto* matmul_qk_out_var =
      pattern->NewNode(matmul_qk_out_repr())->assert_is_op_output("matmul");
  matmul_qk_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto* eltadd_qk =
      pattern->NewNode(eltadd_qk_repr())->assert_is_op("elementwise_add");
  auto* eltadd_qk_b_var = pattern->NewNode(eltadd_qk_b_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add", "Y");
  auto* eltadd_qk_out_var = pattern->NewNode(eltadd_qk_out_repr())
                                ->assert_is_op_output("elementwise_add");
  eltadd_qk_out_var->AsIntermediate()->assert_is_op_input("softmax");

  auto* softmax_qk =
      pattern->NewNode(softmax_qk_repr())->assert_is_op("softmax");
  auto* softmax_qk_out_var =
      pattern->NewNode(softmax_qk_out_repr())->assert_is_op_output("softmax");
  softmax_qk_out_var->AsIntermediate()->assert_is_op_input("matmul");

  auto* matmul_qkv =
      pattern->NewNode(matmul_qkv_repr())->assert_is_op("matmul");
  auto* matmul_qkv_out_var =
      pattern->NewNode(matmul_qkv_out_repr())->assert_is_op_output("matmul");
  matmul_qkv_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_qkv =
      pattern->NewNode(transpose2_qkv_repr())->assert_is_op("transpose2");
  auto* transpose2_qkv_out_var = pattern->NewNode(transpose2_qkv_out_repr())
                                     ->assert_is_op_output("transpose2");
  transpose2_qkv_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_qkv =
      pattern->NewNode(reshape2_qkv_repr())->assert_is_op("reshape2");
  auto* reshape2_qkv_out_var = pattern->NewNode(reshape2_qkv_out_repr())
                                   ->assert_is_op_output("reshape2");
  reshape2_qkv_out_var->assert_is_op_input("mul");

  // Second path to matmul
  auto* mul1 = pattern->NewNode(mul1_repr())->assert_is_op("mul");
  auto* mul1_w_var = pattern->NewNode(mul1_w_repr())
                         ->AsInput()
                         ->assert_is_op_input("mul", "Y");
  auto* mul1_out_var =
      pattern->NewNode(mul1_out_repr())->assert_is_op_output("mul");

  decltype(mul1) eltadd1;
  decltype(mul1) eltadd1_b_var;
  decltype(mul1) eltadd1_out_var;

  mul1_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd1 = pattern->NewNode(eltadd1_repr())->assert_is_op("elementwise_add");
  eltadd1_b_var = pattern->NewNode(eltadd1_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd1_out_var = pattern->NewNode(eltadd1_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd1_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_1 =
      pattern->NewNode(reshape2_1_repr())->assert_is_op("reshape2");

  auto* reshape2_1_out_var =
      pattern->NewNode(reshape2_1_out_repr())->assert_is_op_output("reshape2");
  reshape2_1_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_1 =
      pattern->NewNode(transpose2_1_repr())->assert_is_op("transpose2");
  auto* transpose2_1_out_var = pattern->NewNode(transpose2_1_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_1_out_var->AsIntermediate()->assert_is_op_input(
      "matmul");  // link to matmul qk

  // Third path to matmul
  auto* mul2 = pattern->NewNode(mul2_repr())->assert_is_op("mul");
  auto* mul2_w_var = pattern->NewNode(mul2_w_repr())
                         ->AsInput()
                         ->assert_is_op_input("mul", "Y");
  auto* mul2_out_var =
      pattern->NewNode(mul2_out_repr())->assert_is_op_output("mul");

  decltype(mul2) eltadd2;
  decltype(mul2) eltadd2_b_var;
  decltype(mul2) eltadd2_out_var;

  mul2_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd2 = pattern->NewNode(eltadd2_repr())->assert_is_op("elementwise_add");
  eltadd2_b_var = pattern->NewNode(eltadd2_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd2_out_var = pattern->NewNode(eltadd2_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd2_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_2 =
      pattern->NewNode(reshape2_2_repr())->assert_is_op("reshape2");

  auto* reshape2_2_out_var =
      pattern->NewNode(reshape2_2_out_repr())->assert_is_op_output("reshape2");
  reshape2_2_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_2 =
      pattern->NewNode(transpose2_2_repr())->assert_is_op("transpose2");
  auto* transpose2_2_out_var = pattern->NewNode(transpose2_2_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_2_out_var->AsIntermediate()->assert_is_op_input(
      "matmul");  // link to matmul qkv

  // Q path
415
  mul0->LinksFrom({input0, mul0_w_var}).LinksTo({mul0_out_var});
416 417 418 419 420 421
  eltadd0->LinksFrom({mul0_out_var, eltadd0_b_var}).LinksTo({eltadd0_out_var});

  reshape2_0->LinksFrom({eltadd0_out_var}).LinksTo({reshape2_0_out_var});
  transpose2_0->LinksFrom({reshape2_0_out_var}).LinksTo({transpose2_0_out_var});
  scale->LinksFrom({transpose2_0_out_var}).LinksTo({scale_out_var});
  // K path
422
  mul1->LinksFrom({input0, mul1_w_var}).LinksTo({mul1_out_var});
423 424 425 426 427 428 429 430 431 432
  eltadd1->LinksFrom({mul1_out_var, eltadd1_b_var}).LinksTo({eltadd1_out_var});
  reshape2_1->LinksFrom({eltadd1_out_var}).LinksTo({reshape2_1_out_var});
  transpose2_1->LinksFrom({reshape2_1_out_var}).LinksTo({transpose2_1_out_var});
  // compute q*k
  matmul_qk->LinksFrom({scale_out_var, transpose2_1_out_var})
      .LinksTo({matmul_qk_out_var});
  eltadd_qk->LinksFrom({matmul_qk_out_var, eltadd_qk_b_var})
      .LinksTo({eltadd_qk_out_var});
  softmax_qk->LinksFrom({eltadd_qk_out_var}).LinksTo({softmax_qk_out_var});
  // V  path
433
  mul2->LinksFrom({input0, mul2_w_var}).LinksTo({mul2_out_var});
434 435 436 437 438 439 440 441 442 443 444 445 446 447
  eltadd2->LinksFrom({mul2_out_var, eltadd2_b_var}).LinksTo({eltadd2_out_var});
  reshape2_2->LinksFrom({eltadd2_out_var}).LinksTo({reshape2_2_out_var});
  transpose2_2->LinksFrom({reshape2_2_out_var}).LinksTo({transpose2_2_out_var});
  // compute q*k*v
  matmul_qkv->LinksFrom({softmax_qk_out_var, transpose2_2_out_var})
      .LinksTo({matmul_qkv_out_var});
  transpose2_qkv->LinksFrom({matmul_qkv_out_var})
      .LinksTo({transpose2_qkv_out_var});
  reshape2_qkv->LinksFrom({transpose2_qkv_out_var})
      .LinksTo({reshape2_qkv_out_var});

  return transpose2_2_out_var;
}

448
PDNode* MultiHeadMatmulV3Pattern::operator()() {
449 450
  // Add mul op to support huggingface onnx model convertsion by x2paddle
  std::unordered_set<std::string> matmul_ops{"mul", "matmul", "matmul_v2"};
451
  auto* input0 = pattern->NewNode(input0_repr());
452
  input0->assert_is_ops_input(matmul_ops);
453 454

  // First path with scale
455
  auto* mul0 = pattern->NewNode(mul0_repr())->assert_is_ops(matmul_ops);
456 457
  auto* mul0_w_var = pattern->NewNode(mul0_w_repr())
                         ->AsInput()
458
                         ->assert_is_ops_input(matmul_ops, "Y");
459
  auto* mul0_out_var =
460
      pattern->NewNode(mul0_out_repr())->assert_is_ops_output(matmul_ops);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

  decltype(mul0) eltadd0;
  decltype(mul0) eltadd0_b_var;
  decltype(mul0) eltadd0_out_var;

  mul0_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  eltadd0 = pattern->NewNode(eltadd0_repr())->assert_is_op("elementwise_add");
  eltadd0_b_var = pattern->NewNode(eltadd0_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd0_out_var = pattern->NewNode(eltadd0_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd0_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_0 =
      pattern->NewNode(reshape2_0_repr())->assert_is_op("reshape2");

  auto* reshape2_0_out_var =
      pattern->NewNode(reshape2_0_out_repr())->assert_is_op_output("reshape2");
  reshape2_0_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_0 =
      pattern->NewNode(transpose2_0_repr())->assert_is_op("transpose2");
  auto* transpose2_0_out_var = pattern->NewNode(transpose2_0_out_repr())
                                   ->assert_is_op_output("transpose2");
488
  transpose2_0_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops, "X");
489

490 491
  auto* matmul_qk =
      pattern->NewNode(matmul_qk_repr())->assert_is_ops(matmul_ops);
492
  auto* matmul_qk_out_var =
493
      pattern->NewNode(matmul_qk_out_repr())->assert_is_ops_output(matmul_ops);
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
  matmul_qk_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto* eltadd_qk =
      pattern->NewNode(eltadd_qk_repr())->assert_is_op("elementwise_add");
  auto* eltadd_qk_b_var = pattern->NewNode(eltadd_qk_b_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add", "Y");
  auto* eltadd_qk_out_var = pattern->NewNode(eltadd_qk_out_repr())
                                ->assert_is_op_output("elementwise_add");
  eltadd_qk_out_var->AsIntermediate()->assert_is_op_input("softmax");

  auto* softmax_qk =
      pattern->NewNode(softmax_qk_repr())->assert_is_op("softmax");
  auto* softmax_qk_out_var =
      pattern->NewNode(softmax_qk_out_repr())->assert_is_op_output("softmax");
  softmax_qk_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops);

  auto* matmul_qkv =
      pattern->NewNode(matmul_qkv_repr())->assert_is_ops(matmul_ops);
  auto* matmul_qkv_out_var =
      pattern->NewNode(matmul_qkv_out_repr())->assert_is_ops_output(matmul_ops);
  matmul_qkv_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_qkv =
      pattern->NewNode(transpose2_qkv_repr())->assert_is_op("transpose2");
  auto* transpose2_qkv_out_var = pattern->NewNode(transpose2_qkv_out_repr())
                                     ->assert_is_op_output("transpose2");
  transpose2_qkv_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_qkv =
      pattern->NewNode(reshape2_qkv_repr())->assert_is_op("reshape2");
  auto* reshape2_qkv_out_var = pattern->NewNode(reshape2_qkv_out_repr())
                                   ->assert_is_op_output("reshape2");
527
  reshape2_qkv_out_var->assert_is_ops_input(matmul_ops);
528
  // Second path to matmul
529
  auto* mul1 = pattern->NewNode(mul1_repr())->assert_is_ops(matmul_ops);
530 531
  auto* mul1_w_var = pattern->NewNode(mul1_w_repr())
                         ->AsInput()
532
                         ->assert_is_ops_input(matmul_ops, "Y");
533
  auto* mul1_out_var =
534
      pattern->NewNode(mul1_out_repr())->assert_is_ops_output(matmul_ops);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

  decltype(mul1) eltadd1;
  decltype(mul1) eltadd1_b_var;
  decltype(mul1) eltadd1_out_var;

  mul1_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd1 = pattern->NewNode(eltadd1_repr())->assert_is_op("elementwise_add");
  eltadd1_b_var = pattern->NewNode(eltadd1_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd1_out_var = pattern->NewNode(eltadd1_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd1_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_1 =
      pattern->NewNode(reshape2_1_repr())->assert_is_op("reshape2");

  auto* reshape2_1_out_var =
      pattern->NewNode(reshape2_1_out_repr())->assert_is_op_output("reshape2");
  reshape2_1_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_1 =
      pattern->NewNode(transpose2_1_repr())->assert_is_op("transpose2");
  auto* transpose2_1_out_var = pattern->NewNode(transpose2_1_out_repr())
                                   ->assert_is_op_output("transpose2");
561 562
  transpose2_1_out_var->AsIntermediate()->assert_is_ops_input(
      matmul_ops, "Y");  // link to matmul qk
563 564

  // Third path to matmul
565
  auto* mul2 = pattern->NewNode(mul2_repr())->assert_is_ops(matmul_ops);
566 567
  auto* mul2_w_var = pattern->NewNode(mul2_w_repr())
                         ->AsInput()
568
                         ->assert_is_ops_input(matmul_ops, "Y");
569
  auto* mul2_out_var =
570
      pattern->NewNode(mul2_out_repr())->assert_is_ops_output(matmul_ops);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

  decltype(mul2) eltadd2;
  decltype(mul2) eltadd2_b_var;
  decltype(mul2) eltadd2_out_var;

  mul2_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
  eltadd2 = pattern->NewNode(eltadd2_repr())->assert_is_op("elementwise_add");
  eltadd2_b_var = pattern->NewNode(eltadd2_b_repr())
                      ->AsInput()
                      ->assert_is_op_input("elementwise_add", "Y");

  eltadd2_out_var = pattern->NewNode(eltadd2_out_repr())
                        ->assert_is_op_output("elementwise_add");
  eltadd2_out_var->AsIntermediate()->assert_is_op_input("reshape2");

  auto* reshape2_2 =
      pattern->NewNode(reshape2_2_repr())->assert_is_op("reshape2");

  auto* reshape2_2_out_var =
      pattern->NewNode(reshape2_2_out_repr())->assert_is_op_output("reshape2");
  reshape2_2_out_var->AsIntermediate()->assert_is_op_input("transpose2");

  auto* transpose2_2 =
      pattern->NewNode(transpose2_2_repr())->assert_is_op("transpose2");
  auto* transpose2_2_out_var = pattern->NewNode(transpose2_2_out_repr())
                                   ->assert_is_op_output("transpose2");
  transpose2_2_out_var->AsIntermediate()->assert_is_ops_input(
      matmul_ops);  // link to matmul qkv

  // Q path
  mul0->LinksFrom({input0, mul0_w_var}).LinksTo({mul0_out_var});
  eltadd0->LinksFrom({mul0_out_var, eltadd0_b_var}).LinksTo({eltadd0_out_var});

  reshape2_0->LinksFrom({eltadd0_out_var}).LinksTo({reshape2_0_out_var});
  transpose2_0->LinksFrom({reshape2_0_out_var}).LinksTo({transpose2_0_out_var});
  // K path
  mul1->LinksFrom({input0, mul1_w_var}).LinksTo({mul1_out_var});
  eltadd1->LinksFrom({mul1_out_var, eltadd1_b_var}).LinksTo({eltadd1_out_var});
  reshape2_1->LinksFrom({eltadd1_out_var}).LinksTo({reshape2_1_out_var});
  transpose2_1->LinksFrom({reshape2_1_out_var}).LinksTo({transpose2_1_out_var});
  // compute q*k
  matmul_qk->LinksFrom({transpose2_0_out_var, transpose2_1_out_var})
      .LinksTo({matmul_qk_out_var});
  eltadd_qk->LinksFrom({matmul_qk_out_var, eltadd_qk_b_var})
      .LinksTo({eltadd_qk_out_var});
  softmax_qk->LinksFrom({eltadd_qk_out_var}).LinksTo({softmax_qk_out_var});
  // V  path
  mul2->LinksFrom({input0, mul2_w_var}).LinksTo({mul2_out_var});
  eltadd2->LinksFrom({mul2_out_var, eltadd2_b_var}).LinksTo({eltadd2_out_var});
  reshape2_2->LinksFrom({eltadd2_out_var}).LinksTo({reshape2_2_out_var});
  transpose2_2->LinksFrom({reshape2_2_out_var}).LinksTo({transpose2_2_out_var});
  // compute q*k*v
  matmul_qkv->LinksFrom({softmax_qk_out_var, transpose2_2_out_var})
      .LinksTo({matmul_qkv_out_var});
  transpose2_qkv->LinksFrom({matmul_qkv_out_var})
      .LinksTo({transpose2_qkv_out_var});
  reshape2_qkv->LinksFrom({transpose2_qkv_out_var})
      .LinksTo({reshape2_qkv_out_var});

  return transpose2_2_out_var;
}
}  // namespace patterns

void MultiHeadMatmulFusePass::ApplyImpl(Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);

  int fusion_count = patterns::BuildFusion(graph, name_scope_);
  AddStatis(fusion_count);
}

MultiHeadMatmulV2FusePass::MultiHeadMatmulV2FusePass() {
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddInput("Y")  // the shape shoule be (N*H, N*H)
      .IsTensor()
      .End()
      .AddOutput("Out")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(2)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      // in bias, shape is (B, S, N*H),
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      .AddInput("Y")
      // in bias, shape is (N*H)
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      // in bias, shape is (B, S, N*H)
      // in biasqk, shape is (B, H, S, S)
      .AddOutput("Out")
      .IsTensor()
      .End()
      // in bias, it equal to 2
      // in biasqk, it equal to -1 or 0
      .AddAttr("axis")
      .IsIntIn({2, -1, 0})
      .End();

  AddOpCompat(OpCompat("reshape2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Shape")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ShapeTensor")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
697
      .IsOptional()
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
      .IsTensor()
      .End()
      .AddAttr("shape")  // -->(B, S, H, N)  <--(B, S, N*H)
      .IsType<std::vector<int>>()
      .End();

  // -->: (B, S, H, N) -> (B, H, S, N)
  // <--: (B, H, S, N) -> (B, S, H, N)
  AddOpCompat(OpCompat("transpose2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
714
      .IsOptional()
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
      .IsTensor()
      .End()
      .AddAttr("axis")  // {0, 2, 1, 3}
      .IsType<std::vector<int>>()
      .End();

  AddOpCompat(OpCompat("scale"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("scale")
      .IsType<float>()  // copy to new op. so unconstrained.
      .End()
      .AddAttr("bias")
      .IsNumEQ(0.f)
      .End()
      .AddAttr("bias_after_scale")  // bias is 0, so unconstrained.
      .IsType<bool>()
      .End();

  // QK (B, H, S, N)*(B, H, S, N) -> (B, H, S, S)
  // QKV (B, H, S, S)*(B, H, S, N) -> (B, H, S, N)
  AddOpCompat(OpCompat("matmul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("alpha")
      .IsNumEQ(1.0f)
      .End()
      .AddAttr("transpose_X")
      .IsBoolEQ(false)
      .End()
      .AddAttr("transpose_Y")  // QK(true) QKV(false)
      .IsType<bool>()
      .End();

  AddOpCompat(OpCompat("softmax"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsIntIn({-1, 3})  // shape is (B, H, S, S), so axis is -1 or 3
      .End();
}

int MultiHeadMatmulV2FusePass::BuildFusionV2(Graph* graph,
                                             const std::string& name_scope,
                                             Scope* scope) const {
775 776 777 778
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Create pattern.
779
  patterns::MultiHeadMatmulPattern multihead_pattern(pattern, name_scope);
780

781
  multihead_pattern();
782
  // Create New OpDesc
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
  auto fuse_creater = [&](Node* input0,
                          Node* mul0,
                          Node* mul1,
                          Node* mul2,
                          Node* mul0_out,
                          Node* mul1_out,
                          Node* mul2_out,
                          Node* mul0_w,
                          Node* mul1_w,
                          Node* mul2_w,
                          Node* eltadd0_b,
                          Node* eltadd1_b,
                          Node* eltadd2_b,
                          Node* eltadd_qk_b,
                          Node* reshape2,
                          Node* reshape2_qkv_out,
                          Node* scale,
                          Node* scale_out,
                          Node* softmax_qk,
                          Node* eltadd0,
                          Node* eltadd1,
                          Node* eltadd2,
                          Node* matmul_qk,
                          Node* reshape2_qkv) {
R
Ruibiao Chen 已提交
807
    auto scale_attr = PADDLE_GET_CONST(float, scale->Op()->GetAttr("scale"));
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

    // mul (B * S * Hidden) x (Hidden * 3 * N * H) = (B * S * 3 * N * H)
    // bias (B * S * 3 * N * H) + bias (3 * N * H)
    // Transpose (B * S * 3 * N * H) -> (3 * B * N * S * H)
    auto* wq_tensor = scope->FindVar(mul0_w->Name())->GetMutable<LoDTensor>();
    auto* wk_tensor = scope->FindVar(mul1_w->Name())->GetMutable<LoDTensor>();
    auto* wv_tensor = scope->FindVar(mul2_w->Name())->GetMutable<LoDTensor>();

    auto* bq_tensor =
        scope->FindVar(eltadd0_b->Name())->GetMutable<LoDTensor>();
    auto* bk_tensor =
        scope->FindVar(eltadd1_b->Name())->GetMutable<LoDTensor>();
    auto* bv_tensor =
        scope->FindVar(eltadd2_b->Name())->GetMutable<LoDTensor>();

    auto* wq_data = wq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wk_data = wk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wv_data = wv_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bq_data = bq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bk_data = bk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bv_data = bv_tensor->mutable_data<float>(platform::CPUPlace());

    auto combined_w_dims =
831 832
        phi::make_ddim({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    auto combined_bias_dims = phi::make_ddim({3, bq_tensor->dims()[0]});
833

834 835 836 837 838 839 840 841 842 843 844 845 846 847
    // reuse the mul0_w and eltadd_0_b nodes for the combined nodes.
    auto* combined_w_desc = mul0_w->Var();
    combined_w_desc->SetShape({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    combined_w_desc->SetPersistable(true);

    auto* combined_bias_desc = eltadd0_b->Var();
    combined_bias_desc->SetShape({3, bq_tensor->dims()[0]});
    combined_bias_desc->SetPersistable(true);

    framework::LoDTensor tmp_combined_w_tensor;
    tmp_combined_w_tensor.Resize(combined_w_dims);
    auto* tmp_combined_w_data =
        tmp_combined_w_tensor.mutable_data<float>(platform::CPUPlace());

848 849 850 851 852 853 854 855
    std::vector<float*> w_vec = {wq_data, wk_data, wv_data};
    int dims_h = combined_w_dims[0], dims_w = combined_w_dims[2];
    // Combine the three fc weights together.
    for (int i = 0; i < dims_h; i++) {
      for (int j = 0; j < 3; j++) {
        for (int k = 0; k < dims_w; k++) {
          int out_index = i * (3 * dims_w) + j * dims_w + k;
          int in_index = i * dims_w + k;
856
          tmp_combined_w_data[out_index] = w_vec[j][in_index];
857 858 859
        }
      }
    }
860 861 862 863

    wq_tensor->Resize(combined_w_dims);
    auto* new_combined_w_data =
        wq_tensor->mutable_data<float>(platform::CPUPlace());
864 865
    memcpy(new_combined_w_data,
           tmp_combined_w_data,
866 867 868 869 870 871 872 873 874
           sizeof(float) * wq_tensor->numel());

    scope->EraseVars({mul1_w->Name(), mul2_w->Name()});

    framework::LoDTensor tmp_combined_bias_tensor;
    tmp_combined_bias_tensor.Resize(combined_bias_dims);
    auto* tmp_combined_bias_data =
        tmp_combined_bias_tensor.mutable_data<float>(platform::CPUPlace());

875
    size_t bias_size = bq_tensor->numel();
876
    memcpy(tmp_combined_bias_data, bq_data, sizeof(float) * bias_size);
877 878 879 880
    memcpy(
        tmp_combined_bias_data + bias_size, bk_data, sizeof(float) * bias_size);
    memcpy(tmp_combined_bias_data + 2 * bias_size,
           bv_data,
881 882
           sizeof(float) * bias_size);

883 884 885
    bq_tensor->Resize(combined_bias_dims);
    auto* new_combined_bias_data =
        bq_tensor->mutable_data<float>(platform::CPUPlace());
886 887
    memcpy(new_combined_bias_data,
           tmp_combined_bias_data,
888 889 890
           sizeof(float) * bq_tensor->numel());

    scope->EraseVars({eltadd1_b->Name(), eltadd2_b->Name()});
891 892 893

    auto reshape_desc = reshape2->Op();
    int head_number =
R
Ruibiao Chen 已提交
894 895
        PADDLE_GET_CONST(std::vector<int>, reshape_desc->GetAttr("shape"))
            .at(2);
896

897
    OpDesc multihead_op_desc(mul0->Op()->Block());
898 899
    multihead_op_desc.SetType("multihead_matmul");

900 901 902
    multihead_op_desc.SetInput("Input", {input0->Name()});
    multihead_op_desc.SetInput("W", {mul0_w->Name()});
    multihead_op_desc.SetInput("Bias", {eltadd0_b->Name()});
903 904 905 906 907 908
    multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()});

    multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()});
    multihead_op_desc.SetAttr("alpha", scale_attr);
    multihead_op_desc.SetAttr("head_number", head_number);

909
    auto* mul0_op_desc = mul0->Op();
910 911

    // all mul op has same input.
W
Wangzheee 已提交
912
    if (mul0_op_desc->HasAttr("Input_scale")) {
913
      multihead_op_desc.SetAttr("Input_scale",
914 915 916 917 918 919 920
                                mul0_op_desc->GetAttr("Input_scale"));
    }
    auto* add0_op_desc = eltadd0->Op();
    auto* add1_op_desc = eltadd1->Op();
    auto* add2_op_desc = eltadd2->Op();
    if (add0_op_desc->HasAttr("out_threshold")) {
      auto out_scale0 =
R
Ruibiao Chen 已提交
921
          PADDLE_GET_CONST(float, add0_op_desc->GetAttr("out_threshold"));
922
      auto out_scale1 =
R
Ruibiao Chen 已提交
923
          PADDLE_GET_CONST(float, add1_op_desc->GetAttr("out_threshold"));
924
      auto out_scale2 =
R
Ruibiao Chen 已提交
925
          PADDLE_GET_CONST(float, add2_op_desc->GetAttr("out_threshold"));
926 927 928
      auto out_scale_max = std::max(out_scale0, out_scale1);
      out_scale_max = std::max(out_scale_max, out_scale2);
      multihead_op_desc.SetAttr("fc_out_threshold", out_scale_max);
929 930
    }

931 932
    auto* softmax_qk_op_desc = softmax_qk->Op();
    auto* matmul_qk_op_desc = matmul_qk->Op();
933
    if (matmul_qk_op_desc->HasAttr("Input_scale")) {
934 935
      multihead_op_desc.SetAttr("qkv2context_plugin_int8", true);
      if (softmax_qk_op_desc->HasAttr("out_threshold")) {
R
Ruibiao Chen 已提交
936
        auto qkv_plugin_scale = PADDLE_GET_CONST(
937 938 939 940
            float, softmax_qk_op_desc->GetAttr("out_threshold"));
        multihead_op_desc.SetAttr("dp_probs", qkv_plugin_scale);
      }
    }
941 942 943 944
    if (reshape2_qkv->Op()->HasAttr("out_threshold")) {
      multihead_op_desc.SetAttr("out_threshold",
                                reshape2_qkv->Op()->GetAttr("out_threshold"));
    }
945 946
    auto* multihead = graph->CreateOpNode(&multihead_op_desc);

947 948 949
    IR_NODE_LINK_TO(input0, multihead);
    IR_NODE_LINK_TO(mul0_w, multihead);
    IR_NODE_LINK_TO(eltadd0_b, multihead);
950 951 952 953 954 955 956 957
    IR_NODE_LINK_TO(eltadd_qk_b, multihead);

    IR_NODE_LINK_TO(multihead, reshape2_qkv_out);
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
958 959 960 961 962
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING)
          << "Op compat check in multihead_matmul_fuse_pass_v2 failed.";
      return;
    }
963
    // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern);
964
    GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern);
965 966 967 968 969

    GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern);
970 971
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_0_out, reshape2_0_out, multihead_pattern);
972
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern);
973 974
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_0_out, transpose2_0_out, multihead_pattern);
975 976 977 978 979 980 981
    GET_IR_NODE_FROM_SUBGRAPH(scale, scale, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(scale_out, scale_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern);
982 983
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_1_out, reshape2_1_out, multihead_pattern);
984
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern);
985 986
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_1_out, transpose2_1_out, multihead_pattern);
987 988 989 990 991

    GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern);
992 993
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_2_out, reshape2_2_out, multihead_pattern);
994
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern);
995 996
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_2_out, transpose2_2_out, multihead_pattern);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

    // nodes need be removed
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern);
1019 1020
    GET_IR_NODE_FROM_SUBGRAPH(
        softmax_qk_out, softmax_qk_out, multihead_pattern);
1021 1022

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern);
1023 1024
    GET_IR_NODE_FROM_SUBGRAPH(
        matmul_qkv_out, matmul_qkv_out, multihead_pattern);
1025 1026

    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern);
1027 1028 1029 1030 1031 1032
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_qkv_out, reshape2_qkv_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv, transpose2_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv_out, transpose2_qkv_out, multihead_pattern);
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    // If weights or biases in qkv's fc are shared by multiple multihead_matmul
    // patterns, we do not support this kind of fusion, this pass will not take
    // effect.
    bool is_fc_params_shared =
        mul0_w->outputs.size() > 1 || mul1_w->outputs.size() > 1 ||
        mul2_w->outputs.size() > 1 || eltadd0_b->outputs.size() > 1 ||
        eltadd1_b->outputs.size() > 1 || eltadd2_b->outputs.size() > 1;
    if (is_fc_params_shared) {
      return;
    }
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    fuse_creater(input0,
                 mul0,
                 mul1,
                 mul2,
                 mul0_out,
                 mul1_out,
                 mul2_out,
                 mul0_w,
                 mul1_w,
                 mul2_w,
                 eltadd0_b,
                 eltadd1_b,
                 eltadd2_b,
                 eltadd_qk_b,
                 reshape2_0,
                 reshape2_qkv_out,
                 scale,
                 scale_out,
                 softmax_qk,
                 eltadd0,
                 eltadd1,
                 eltadd2,
                 matmul_qk,
                 reshape2_qkv);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

    std::unordered_set<const Node*> marked_nodes({eltadd0,
                                                  eltadd1,
                                                  eltadd2,
                                                  eltadd1_b,
                                                  eltadd2_b,
                                                  eltadd0_out,
                                                  eltadd1_out,
                                                  eltadd2_out,
                                                  reshape2_0,
                                                  reshape2_1,
                                                  reshape2_2,
                                                  reshape2_0_out,
                                                  reshape2_1_out,
                                                  reshape2_2_out,
                                                  transpose2_0,
                                                  transpose2_1,
                                                  transpose2_2,
                                                  transpose2_0_out,
                                                  transpose2_1_out,
                                                  transpose2_2_out,
                                                  matmul_qk,
                                                  matmul_qk_out,
                                                  eltadd_qk,
                                                  eltadd_qk_out,
                                                  softmax_qk,
                                                  softmax_qk_out,
                                                  transpose2_qkv,
                                                  transpose2_qkv_out,
                                                  matmul_qkv,
                                                  matmul_qkv_out,
                                                  mul0,
                                                  mul1,
                                                  mul2,
                                                  mul0_out,
                                                  mul1_out,
                                                  mul2_out,
                                                  mul1_w,
                                                  mul2_w,
                                                  reshape2_qkv,
                                                  scale});
    // Remove unneeded nodes.
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);

  return fusion_count;
}

1118 1119 1120 1121 1122 1123 1124
void MultiHeadMatmulV2FusePass::ApplyImpl(Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
  auto* scope = param_scope();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::Fatal(
          "During the multiheadMatmul pass, The scope should not be null."));
1125

1126 1127 1128 1129 1130 1131
  int fusion_count = BuildFusionV2(graph, name_scope_, scope);
  if (fusion_count > 0) {
    graph->Set(kMultiheadMatmulPass, new bool(true));
  }
  AddStatis(fusion_count);
}
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
MultiHeadMatmulV3FusePass::MultiHeadMatmulV3FusePass() {
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddInput("Y")  // the shape shoule be (N*H, N*H)
      .IsTensor()
      .End()
      .AddOutput("Out")  // the shape shoule be (B, S, N*H)
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(2)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      // in bias, shape is (B, S, N*H),
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      .AddInput("Y")
      // in bias, shape is (N*H)
      // in biasqk, shape is (B, H, S, S)
      .IsTensor()
      .End()
      // in bias, shape is (B, S, N*H)
      // in biasqk, shape is (B, H, S, S)
      .AddOutput("Out")
      .IsTensor()
      .End()
      // in bias, it equal to 2
      // in biasqk, it equal to -1 or 0
      .AddAttr("axis")
      .IsIntIn({2, -1, 0})
      .End();

  AddOpCompat(OpCompat("reshape2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Shape")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ShapeTensor")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
1189
      .IsOptional()
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
      .IsTensor()
      .End()
      .AddAttr("shape")  // -->(B, S, H, N)  <--(B, S, N*H)
      .IsType<std::vector<int>>()
      .End();

  // -->: (B, S, H, N) -> (B, H, S, N)
  // <--: (B, H, S, N) -> (B, S, H, N)
  AddOpCompat(OpCompat("transpose2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddOutput("XShape")
1206
      .IsOptional()
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
      .IsTensor()
      .End()
      .AddAttr("axis")  // {0, 2, 1, 3}
      .IsType<std::vector<int>>()
      .End();

  // QK (B, H, S, N)*(B, H, S, N) -> (B, H, S, S)
  // QKV (B, H, S, S)*(B, H, S, N) -> (B, H, S, N)
  AddOpCompat(OpCompat("matmul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("alpha")
      .IsType<float>()  // QK(anyvalue, will copy to new op) QKV(1.0)
      .End()
      .AddAttr("transpose_X")
      .IsBoolEQ(false)
      .End()
      .AddAttr("transpose_Y")  // QK(true) QKV(false)
      .IsType<bool>()
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
      .End();

  AddOpCompat(OpCompat("matmul_v2"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("trans_x")
      .IsBoolEQ(false)
      .End()
      .AddAttr("trans_y")  // QK(true) QKV(false)
      .IsType<bool>()
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
      .End();

  AddOpCompat(OpCompat("softmax"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsIntIn({-1, 3})  // shape is (B, H, S, S), so axis is -1 or 3
      .End();
1262 1263
}

1264 1265 1266
int MultiHeadMatmulV3FusePass::BuildFusionV3(Graph* graph,
                                             const std::string& name_scope,
                                             Scope* scope) const {
1267 1268 1269 1270
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Create pattern.
1271
  patterns::MultiHeadMatmulV3Pattern multihead_pattern(pattern, name_scope);
1272 1273 1274

  multihead_pattern();
  // Create New OpDesc
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
  auto fuse_creater = [&](Node* input0,
                          Node* mul0,
                          Node* mul1,
                          Node* mul2,
                          Node* mul0_out,
                          Node* mul1_out,
                          Node* mul2_out,
                          Node* mul0_w,
                          Node* mul1_w,
                          Node* mul2_w,
                          Node* eltadd0_b,
                          Node* eltadd1_b,
                          Node* eltadd2_b,
                          Node* eltadd_qk_b,
                          Node* reshape2,
                          Node* reshape2_qkv_out,
                          Node* matmul_qk) {
R
Ruibiao Chen 已提交
1292 1293
    auto scale_attr =
        PADDLE_GET_CONST(float, matmul_qk->Op()->GetAttr("alpha"));
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

    // mul (B * S * Hidden) x (Hidden * 3 * N * H) = (B * S * 3 * N * H)
    // bias (B * S * 3 * N * H) + bias (3 * N * H)
    // Transpose (B * S * 3 * N * H) -> (3 * B * N * S * H)
    auto* wq_tensor = scope->FindVar(mul0_w->Name())->GetMutable<LoDTensor>();
    auto* wk_tensor = scope->FindVar(mul1_w->Name())->GetMutable<LoDTensor>();
    auto* wv_tensor = scope->FindVar(mul2_w->Name())->GetMutable<LoDTensor>();

    auto* bq_tensor =
        scope->FindVar(eltadd0_b->Name())->GetMutable<LoDTensor>();
    auto* bk_tensor =
        scope->FindVar(eltadd1_b->Name())->GetMutable<LoDTensor>();
    auto* bv_tensor =
        scope->FindVar(eltadd2_b->Name())->GetMutable<LoDTensor>();

    auto* wq_data = wq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wk_data = wk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* wv_data = wv_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bq_data = bq_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bk_data = bk_tensor->mutable_data<float>(platform::CPUPlace());
    auto* bv_data = bv_tensor->mutable_data<float>(platform::CPUPlace());

    auto combined_w_dims =
1317 1318
        phi::make_ddim({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    auto combined_bias_dims = phi::make_ddim({3, bq_tensor->dims()[0]});
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

    // reuse the mul0_w and eltadd_0_b nodes for the combined nodes.
    auto* combined_w_desc = mul0_w->Var();
    combined_w_desc->SetShape({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]});
    combined_w_desc->SetPersistable(true);

    auto* combined_bias_desc = eltadd0_b->Var();
    combined_bias_desc->SetShape({3, bq_tensor->dims()[0]});
    combined_bias_desc->SetPersistable(true);

    framework::LoDTensor tmp_combined_w_tensor;
    tmp_combined_w_tensor.Resize(combined_w_dims);
    auto* tmp_combined_w_data =
        tmp_combined_w_tensor.mutable_data<float>(platform::CPUPlace());

    std::vector<float*> w_vec = {wq_data, wk_data, wv_data};
    int dims_h = combined_w_dims[0], dims_w = combined_w_dims[2];
    // Combine the three fc weights together.
    for (int i = 0; i < dims_h; i++) {
      for (int j = 0; j < 3; j++) {
        for (int k = 0; k < dims_w; k++) {
          int out_index = i * (3 * dims_w) + j * dims_w + k;
          int in_index = i * dims_w + k;
          tmp_combined_w_data[out_index] = w_vec[j][in_index];
        }
      }
    }

    wq_tensor->Resize(combined_w_dims);
    auto* new_combined_w_data =
        wq_tensor->mutable_data<float>(platform::CPUPlace());
1350 1351
    memcpy(new_combined_w_data,
           tmp_combined_w_data,
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
           sizeof(float) * wq_tensor->numel());

    scope->EraseVars({mul1_w->Name(), mul2_w->Name()});

    framework::LoDTensor tmp_combined_bias_tensor;
    tmp_combined_bias_tensor.Resize(combined_bias_dims);
    auto* tmp_combined_bias_data =
        tmp_combined_bias_tensor.mutable_data<float>(platform::CPUPlace());

    size_t bias_size = bq_tensor->numel();
    memcpy(tmp_combined_bias_data, bq_data, sizeof(float) * bias_size);
1363 1364 1365 1366
    memcpy(
        tmp_combined_bias_data + bias_size, bk_data, sizeof(float) * bias_size);
    memcpy(tmp_combined_bias_data + 2 * bias_size,
           bv_data,
1367 1368 1369 1370 1371
           sizeof(float) * bias_size);

    bq_tensor->Resize(combined_bias_dims);
    auto* new_combined_bias_data =
        bq_tensor->mutable_data<float>(platform::CPUPlace());
1372 1373
    memcpy(new_combined_bias_data,
           tmp_combined_bias_data,
1374 1375 1376 1377 1378 1379
           sizeof(float) * bq_tensor->numel());

    scope->EraseVars({eltadd1_b->Name(), eltadd2_b->Name()});

    auto reshape_desc = reshape2->Op();
    int head_number =
R
Ruibiao Chen 已提交
1380 1381
        PADDLE_GET_CONST(std::vector<int>, reshape_desc->GetAttr("shape"))
            .at(2);
1382

1383
    OpDesc multihead_op_desc(mul0->Op()->Block());
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    multihead_op_desc.SetType("multihead_matmul");

    multihead_op_desc.SetInput("Input", {input0->Name()});
    multihead_op_desc.SetInput("W", {mul0_w->Name()});
    multihead_op_desc.SetInput("Bias", {eltadd0_b->Name()});
    multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()});

    multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()});
    multihead_op_desc.SetAttr("alpha", scale_attr);
    multihead_op_desc.SetAttr("head_number", head_number);

    auto* multihead = graph->CreateOpNode(&multihead_op_desc);

    IR_NODE_LINK_TO(input0, multihead);
    IR_NODE_LINK_TO(mul0_w, multihead);
    IR_NODE_LINK_TO(eltadd0_b, multihead);
    IR_NODE_LINK_TO(eltadd_qk_b, multihead);

    IR_NODE_LINK_TO(multihead, reshape2_qkv_out);
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern);
1415 1416
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_0_out, reshape2_0_out, multihead_pattern);
1417
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern);
1418 1419
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_0_out, transpose2_0_out, multihead_pattern);
1420 1421 1422 1423 1424

    GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern);
1425 1426
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_1_out, reshape2_1_out, multihead_pattern);
1427
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern);
1428 1429
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_1_out, transpose2_1_out, multihead_pattern);
1430 1431 1432 1433 1434

    GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern);
1435 1436
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_2_out, reshape2_2_out, multihead_pattern);
1437
    GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern);
1438 1439
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_2_out, transpose2_2_out, multihead_pattern);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

    // nodes need be removed
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern);

    GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern);
1462 1463
    GET_IR_NODE_FROM_SUBGRAPH(
        softmax_qk_out, softmax_qk_out, multihead_pattern);
1464 1465

    GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern);
1466 1467
    GET_IR_NODE_FROM_SUBGRAPH(
        matmul_qkv_out, matmul_qkv_out, multihead_pattern);
1468 1469

    GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern);
1470 1471 1472 1473 1474 1475
    GET_IR_NODE_FROM_SUBGRAPH(
        reshape2_qkv_out, reshape2_qkv_out, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv, transpose2_qkv, multihead_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        transpose2_qkv_out, transpose2_qkv_out, multihead_pattern);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

    // If weights or biases in qkv's fc are shared by multiple multihead_matmul
    // patterns, we do not support this kind of fusion, this pass will not take
    // effect.
    bool is_fc_params_shared =
        mul0_w->outputs.size() > 1 || mul1_w->outputs.size() > 1 ||
        mul2_w->outputs.size() > 1 || eltadd0_b->outputs.size() > 1 ||
        eltadd1_b->outputs.size() > 1 || eltadd2_b->outputs.size() > 1;
    if (is_fc_params_shared) {
      return;
    }
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    fuse_creater(input0,
                 mul0,
                 mul1,
                 mul2,
                 mul0_out,
                 mul1_out,
                 mul2_out,
                 mul0_w,
                 mul1_w,
                 mul2_w,
                 eltadd0_b,
                 eltadd1_b,
                 eltadd2_b,
                 eltadd_qk_b,
                 reshape2_0,
                 reshape2_qkv_out,
                 matmul_qk);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

    std::unordered_set<const Node*> marked_nodes({eltadd0,
                                                  eltadd1,
                                                  eltadd2,
                                                  eltadd1_b,
                                                  eltadd2_b,
                                                  eltadd0_out,
                                                  eltadd1_out,
                                                  eltadd2_out,
                                                  reshape2_0,
                                                  reshape2_1,
                                                  reshape2_2,
                                                  reshape2_0_out,
                                                  reshape2_1_out,
                                                  reshape2_2_out,
                                                  transpose2_0,
                                                  transpose2_1,
                                                  transpose2_2,
                                                  transpose2_0_out,
                                                  transpose2_1_out,
                                                  transpose2_2_out,
                                                  matmul_qk,
                                                  matmul_qk_out,
                                                  eltadd_qk,
                                                  eltadd_qk_out,
                                                  softmax_qk,
                                                  softmax_qk_out,
                                                  transpose2_qkv,
                                                  transpose2_qkv_out,
                                                  matmul_qkv,
                                                  matmul_qkv_out,
                                                  mul0,
                                                  mul1,
                                                  mul2,
                                                  mul0_out,
                                                  mul1_out,
                                                  mul2_out,
                                                  mul1_w,
                                                  mul2_w,
                                                  reshape2_qkv});
    // Remove unneeded nodes.
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);

  return fusion_count;
}

void MultiHeadMatmulV3FusePass::ApplyImpl(Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
  auto* scope = param_scope();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::Fatal(
          "During the multiheadMatmul pass, The scope should not be null."));

1561
  int fusion_count = BuildFusionV3(graph, name_scope_, scope);
1562 1563 1564 1565 1566 1567
  if (fusion_count > 0) {
    graph->Set(kMultiheadMatmulPass, new bool(true));
  }
  AddStatis(fusion_count);
}

1568 1569 1570 1571 1572 1573
}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(multihead_matmul_fuse_pass,
              paddle::framework::ir::MultiHeadMatmulFusePass);
1574 1575 1576

REGISTER_PASS(multihead_matmul_fuse_pass_v2,
              paddle::framework::ir::MultiHeadMatmulV2FusePass);
1577 1578
REGISTER_PASS(multihead_matmul_fuse_pass_v3,
              paddle::framework::ir::MultiHeadMatmulV3FusePass);
1579 1580 1581 1582
REGISTER_PASS_CAPABILITY(multihead_matmul_fuse_pass_v2)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
1583
            .LE("elementwise_add", 1)
1584 1585 1586
            .EQ("reshape2", 0)
            .EQ("transpose2", 0)
            .EQ("scale", 0)
1587
            .LE("matmul", 1)
1588
            .EQ("softmax", 0));
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
REGISTER_PASS_CAPABILITY(multihead_matmul_fuse_pass_v3)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("elementwise_add", 1)
            .EQ("reshape2", 0)
            .EQ("transpose2", 0)
            .EQ("scale", 0)
            .LE("matmul", 1)
            .EQ("matmul_v2", 0)
            .EQ("softmax", 0));