test_adam_op.py 11.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21
from paddle.fluid import core
from paddle.fluid.op import Operator
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


class TestAdamOp1(OpTest):
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

54 55
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, self.attrs)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOp2(OpTest):
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

97 98
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOpMultipleSteps(OpTest):
    def setUp(self):
        '''Test Adam Operator with supplied attributes
        '''
        self.op_type = "adam"
        self.num_steps = 10

        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

    def test_check_output(self):
        for _ in range(self.num_steps):
144 145
            param_out, moment1_out, \
                moment2_out = adam_step(self.inputs, self.attrs)
146 147 148 149 150 151 152 153 154 155 156 157 158 159

            self.outputs = {
                'Moment1Out': moment1_out,
                'Moment2Out': moment2_out,
                'ParamOut': param_out
            }

            # Verify output for this step
            self.check_output()

            # Output of this step becomes input for next step
            self.inputs['Param'] = param_out
            self.inputs['Moment1'] = moment1_out
            self.inputs['Moment2'] = moment2_out
160 161 162 163

            # Update powers of Beta1 and Beta2 for next time step
            self.inputs['Beta1Pow'] *= self.attrs['beta1']
            self.inputs['Beta2Pow'] *= self.attrs['beta1']
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

            # Randomize gradient for next step
            self.inputs['Grad'] = np.random.uniform(
                -1, 1, (102, 105)).astype("float32")


def adam_step(inputs, attributes):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
192
    lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
193
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))
194
    return param_out, moment1_out, moment2_out
195 196


Q
Qiao Longfei 已提交
197
def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad,
Q
Qiao Longfei 已提交
198
                     lazy_mode):
T
wip  
typhoonzero 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    # grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

T
typhoonzero 已提交
218 219 220
    moment1_out = np.zeros(shape=[height, row_numel])
    moment2_out = np.zeros(shape=[height, row_numel])
    param_out = np.zeros(shape=[height, row_numel])
T
wip  
typhoonzero 已提交
221

Q
Qiao Longfei 已提交
222
    def update_row(row_id, update_value):
T
wip  
typhoonzero 已提交
223
        moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
Q
Qiao Longfei 已提交
224
                                                         ) * update_value
T
wip  
typhoonzero 已提交
225
        moment2_out[row_id] = beta2 * moment2[row_id] + (
Q
Qiao Longfei 已提交
226
            1 - beta2) * np.square(update_value)
T
wip  
typhoonzero 已提交
227
        lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
T
typhoonzero 已提交
228 229
        param_out[row_id] = param[row_id] - lr_t * (moment1_out[row_id] / (
            np.sqrt(moment2_out[row_id]) + epsilon))
Q
Qiao Longfei 已提交
230 231 232 233 234 235 236 237 238 239 240

    if lazy_mode:
        for idx, row_id in enumerate(rows):
            update_row(row_id, np_grad[idx])
    else:
        for row_id in range(param_out.shape[0]):
            update_value = np.zeros(np_grad[0].shape).astype("float32")
            if row_id in rows:
                update_value = np_grad[rows.index(row_id)]
            update_row(row_id, update_value)

T
wip  
typhoonzero 已提交
241 242 243 244
    return param_out, moment1_out, moment2_out


class TestSparseAdamOp(unittest.TestCase):
Q
Qiao Longfei 已提交
245
    def setup(self, scope, place, lazy_mode):
T
wip  
typhoonzero 已提交
246 247 248 249 250 251
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4

        height = 10
        rows = [0, 4, 7]
T
typhoonzero 已提交
252
        self.rows = rows
T
wip  
typhoonzero 已提交
253
        row_numel = 12
T
typhoonzero 已提交
254
        self.row_numel = row_numel
T
wip  
typhoonzero 已提交
255
        self.dense_inputs = {
Q
Qiao Longfei 已提交
256 257 258 259 260
            "Param": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment1": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment2": np.full((height, row_numel), 5.0).astype("float32"),
            'Beta1Pow': np.array([beta1**10]).astype("float32"),
            'Beta2Pow': np.array([beta2**10]).astype("float32"),
T
wip  
typhoonzero 已提交
261 262
            "LearningRate": np.full((1), 2.0).astype("float32")
        }
Q
Qiao Longfei 已提交
263
        self.init_output = np.full((height, row_numel), 0.0).astype("float32")
264 265 266 267 268 269
        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            'min_row_size_to_use_multithread': 2
        }
T
wip  
typhoonzero 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        self.sparse_inputs = ["Grad"]

Q
Qiao Longfei 已提交
283 284
        param_out, mom1, mom2 = adam_step_sparse(self.dense_inputs, self.attrs,
                                                 height, rows, row_numel,
Q
Qiao Longfei 已提交
285
                                                 np_array, lazy_mode)
T
wip  
typhoonzero 已提交
286
        self.outputs = {
T
typhoonzero 已提交
287
            "ParamOut": param_out,
T
wip  
typhoonzero 已提交
288 289 290 291
            "Moment1Out": mom1,
            "Moment2Out": mom2
        }

Q
Qiao Longfei 已提交
292
    def check_with_place(self, place, lazy_mode):
T
wip  
typhoonzero 已提交
293
        scope = core.Scope()
Q
Qiao Longfei 已提交
294
        self.setup(scope, place, lazy_mode)
T
wip  
typhoonzero 已提交
295 296

        op_args = dict()
Q
Qiao Longfei 已提交
297
        op_args['lazy_mode'] = lazy_mode
298
        for key, np_array in self.dense_inputs.items():
T
wip  
typhoonzero 已提交
299 300 301 302 303
            var = scope.var(key).get_tensor()
            var.set(np_array, place)
            op_args[key] = key
        for s in self.sparse_inputs:
            op_args[s] = s
T
typhoonzero 已提交
304 305
        for s in self.outputs:
            var = scope.var(s).get_tensor()
Q
Qiao Longfei 已提交
306
            var.set(self.init_output, place)
T
typhoonzero 已提交
307
            op_args[s] = s
T
wip  
typhoonzero 已提交
308 309 310 311
        for k in self.attrs:
            op_args[k] = self.attrs[k]

        # create and run sgd operator
T
typhoonzero 已提交
312 313
        adam_op = Operator("adam", **op_args)
        adam_op.run(scope, place)
T
wip  
typhoonzero 已提交
314

315
        for key, np_array in self.outputs.items():
T
wip  
typhoonzero 已提交
316 317
            out_var = scope.var(key).get_tensor()
            actual = np.array(out_var)
T
typhoonzero 已提交
318 319
            actual = actual.reshape([actual.size])
            np_array = np_array.reshape([np_array.size])
Q
Qiao Longfei 已提交
320 321 322

            for i in range(np_array.size):
                self.assertLess((actual[i] - np_array[i]), 0.00001)
T
wip  
typhoonzero 已提交
323

Q
Qiao Longfei 已提交
324
    def test_sparse_adam(self):
T
wip  
typhoonzero 已提交
325
        places = [core.CPUPlace()]
326
        if core.is_compiled_with_cuda():
T
wip  
typhoonzero 已提交
327 328
            places.append(core.CUDAPlace(0))
        for place in places:
Q
Qiao Longfei 已提交
329 330
            for lazy_mode in (True, False):
                self.check_with_place(place, lazy_mode)
T
wip  
typhoonzero 已提交
331 332


333 334
if __name__ == "__main__":
    unittest.main()