test_adam_op.py 10.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21
from paddle.fluid import core
from paddle.fluid.op import Operator
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


class TestAdamOp1(OpTest):
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

54 55
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, self.attrs)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOp2(OpTest):
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

97 98
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOpMultipleSteps(OpTest):
    def setUp(self):
        '''Test Adam Operator with supplied attributes
        '''
        self.op_type = "adam"
        self.num_steps = 10

        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

    def test_check_output(self):
        for _ in range(self.num_steps):
144 145
            param_out, moment1_out, \
                moment2_out = adam_step(self.inputs, self.attrs)
146 147 148 149 150 151 152 153 154 155 156 157 158 159

            self.outputs = {
                'Moment1Out': moment1_out,
                'Moment2Out': moment2_out,
                'ParamOut': param_out
            }

            # Verify output for this step
            self.check_output()

            # Output of this step becomes input for next step
            self.inputs['Param'] = param_out
            self.inputs['Moment1'] = moment1_out
            self.inputs['Moment2'] = moment2_out
160 161 162 163

            # Update powers of Beta1 and Beta2 for next time step
            self.inputs['Beta1Pow'] *= self.attrs['beta1']
            self.inputs['Beta2Pow'] *= self.attrs['beta1']
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

            # Randomize gradient for next step
            self.inputs['Grad'] = np.random.uniform(
                -1, 1, (102, 105)).astype("float32")


def adam_step(inputs, attributes):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
192
    lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
193
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))
194
    return param_out, moment1_out, moment2_out
195 196


T
wip  
typhoonzero 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    # grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

T
typhoonzero 已提交
217 218 219
    moment1_out = np.zeros(shape=[height, row_numel])
    moment2_out = np.zeros(shape=[height, row_numel])
    param_out = np.zeros(shape=[height, row_numel])
T
wip  
typhoonzero 已提交
220 221 222 223 224 225 226

    for idx, row_id in enumerate(rows):
        moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
                                                         ) * np_grad[idx]
        moment2_out[row_id] = beta2 * moment2[row_id] + (
            1 - beta2) * np.square(np_grad[idx])
        lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
T
typhoonzero 已提交
227 228
        param_out[row_id] = param[row_id] - lr_t * (moment1_out[row_id] / (
            np.sqrt(moment2_out[row_id]) + epsilon))
T
wip  
typhoonzero 已提交
229 230 231 232 233 234 235 236 237 238 239
    return param_out, moment1_out, moment2_out


class TestSparseAdamOp(unittest.TestCase):
    def setup(self, scope, place):
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4

        height = 10
        rows = [0, 4, 7]
T
typhoonzero 已提交
240
        self.rows = rows
T
wip  
typhoonzero 已提交
241
        row_numel = 12
T
typhoonzero 已提交
242
        self.row_numel = row_numel
T
wip  
typhoonzero 已提交
243 244 245 246
        self.dense_inputs = {
            "Param": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment1": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment2": np.full((height, row_numel), 5.0).astype("float32"),
T
typhoonzero 已提交
247 248
            'Beta1Pow': np.array([beta1**10]).astype("float32"),
            'Beta2Pow': np.array([beta2**10]).astype("float32"),
T
wip  
typhoonzero 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            "LearningRate": np.full((1), 2.0).astype("float32")
        }
        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        self.sparse_inputs = ["Grad"]

        param_out, mom1, mom2 = adam_step_sparse(
            self.dense_inputs, self.attrs, height, rows, row_numel, np_array)
        self.outputs = {
T
typhoonzero 已提交
268
            "ParamOut": param_out,
T
wip  
typhoonzero 已提交
269 270 271 272 273 274 275 276 277
            "Moment1Out": mom1,
            "Moment2Out": mom2
        }

    def check_with_place(self, place):
        scope = core.Scope()
        self.setup(scope, place)

        op_args = dict()
278
        for key, np_array in self.dense_inputs.items():
T
wip  
typhoonzero 已提交
279 280 281 282 283
            var = scope.var(key).get_tensor()
            var.set(np_array, place)
            op_args[key] = key
        for s in self.sparse_inputs:
            op_args[s] = s
T
typhoonzero 已提交
284 285 286 287
        for s in self.outputs:
            var = scope.var(s).get_tensor()
            var.set(self.outputs[s], place)
            op_args[s] = s
T
wip  
typhoonzero 已提交
288 289 290 291
        for k in self.attrs:
            op_args[k] = self.attrs[k]

        # create and run sgd operator
T
typhoonzero 已提交
292 293
        adam_op = Operator("adam", **op_args)
        adam_op.run(scope, place)
T
wip  
typhoonzero 已提交
294

295
        for key, np_array in self.outputs.items():
T
wip  
typhoonzero 已提交
296 297
            out_var = scope.var(key).get_tensor()
            actual = np.array(out_var)
T
typhoonzero 已提交
298 299 300 301 302 303
            actual = actual.reshape([actual.size])
            np_array = np_array.reshape([np_array.size])
            for idx, row_id in enumerate(self.rows):
                j = 0
                while j < self.row_numel:
                    pos = row_id * self.row_numel + j
T
update  
typhoonzero 已提交
304 305
                    self.assertLess((actual[pos] - np_array[pos]) / actual[pos],
                                    0.00001)
T
typhoonzero 已提交
306
                    j += 1
T
wip  
typhoonzero 已提交
307 308 309

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
310
        if core.is_compiled_with_cuda():
T
wip  
typhoonzero 已提交
311 312 313 314 315
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


316 317
if __name__ == "__main__":
    unittest.main()